
Prime Computer, Inc.

FDR3058-101B
Basic/VM
Programmer's Guide

BASIC VM
Programmer's Guide

by Laura J. Douros

with Update Pages for Rev. I».<). July. 1982

C b v A . P a u l C i o t o

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should
not be construed as a commitment by Prime Computer Corporation. Prime
Computer Corporation assumes no responsibility for any errors that may appear
in this document.
The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

Copyright © 1982 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, and THE PROGRAMMER'S COMPANION are trademarks
of Prime Computer, Inc.

PRINTING HISTORY - BASIC/VM Programmer's Guide

Edition
*First Edition
•Update
*Second Edition
Third Edition
Update 1
Update 2

These editions are out of print.

Date
December 1977
July 1978
April 1979
July 1980
June 1981
July 1982

Number Documents Rev

IDR3058 14
PTU2600-057 15
PDR3058 16.3
FDR3058 17.2
COR3058-001 18.1
COR3 058-002 19.0

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers
Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053, 2054

Customers Outside U.S.
Contact your local Prime
subsidiary or distributor.

Prime Employees
Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000 X4837

INFORMATION Systems
Contact your Prime
INFORMATION system dealer.

CONTENTS

r

r

PART I - OVERVIEW

INTRODUCTION
Who Needs This Manual 1-1
Description of BASIC/VM 1-1
How to Use This Manual 1-2

OVERVIEW OF PRIMOS
Introduction to PRIMOS 2-1
Command Format Conventions 2-1
Conventions in Examples 2-2
Special Terminal Keys 2-2
System Prompts 2-3
Using the System 2-4
System Access 2-8
Accessing the System 2-8
Directory Operations 2-9
Completing a Work Session 2-16

PART II - BASIC FEATURES

USING BASIC/VM
Introduction 3-1
Accessing BASIC/VM 3-1
Using BASICV Commands 3-2
Exiting the BASICV Subsystem 3-9
Additional Information 3-10
Running Programs from PRIMOS 3-10
Modes of Operation in BASIC/VM 3-10
Accessing Files in Remote Directories 3-12

LANGUAGE ELEMENTS
Introduction 4-1
Operands 4-1
Operators 4-4
Expressions 4-5
Commands 4-6
Statements 4-6
List of Commands and Statements 4-7

PART III - PROGRAMMING IN BASIC/VM

DATA I/O
Introduction 5-1
Data Input Statements 5-1
Data Output Statements 5-5

1 J a n u a r y 1 9 8 0 j - 5 FDR 3058

6 PROGRAM CONTROL STATEMENTS
Introduction 6-1
Unconditioned Control Statements 6-1
Statement Modifiers 6-9

EDITING AND DEBUGGING
Introduction 7-1
Editing a BASIC/VM Program 7-1
Performance Measurement 7-9

PART IV - ADVANCED FEATURES

FILE HANDLING
Introduction 8-1
Opening a Data File 8-2
Access Methods 8-4
Sam File Handling 8-5
DAM File Handling 8-12
MIDAS File Handling in BASIC/VM 8-20
Description of MIDAS Access Statements 8-22
Accessing MIDAS Files 8-22
MIDAS Access Program 8-25

ARRAYS AND MATRICES
Introduction 9-1
Arrays 9-1
Matrices 9-1
Matrix Operations 9-7

FUNCTIONS
Introduction 10-1
Numeric System Functions 10-1
String System Functions 10-6
Usep-Defined Functions 10-9
Using User-Defined Functions 10-13

* >

~ >

11 EXPRESSIONS
Introduction 11-1
Evaluation Priority List 11-1
Numeric Expressions 11-1
String Expressions 11-3
D r\Io Jinn a 1 Rvriroccinn Q 11— 3Relational Expressions 11-3
Logical Expressions 11-6

F D R 3 0 5 8 ' f 1 January 1980

12

13
14

A

C
D

E

PART V - REFERENCE

PRIMOS COMMANDS
Introduction 12-1
PRIMOS Commands 12-1

BASIC/VM COMMANDS

BASIC/VM STATEMENTS
BASIC/VM Conventions 14-1

APPENDICES

SAMPLE PROGRAMS
Sample Programs A-1

ASCII CHARACTER SET

RUN-TIME ERROR CODES

ADDITIONAL PRIMOS FEATURES
Glossary of Prime Concepts and Conventions D-l
Command Input Files (COMINPUT) D-6
Command Output Files (COMOUTPUT) D-7

ADVANCED FILE HANDLING
Contents E-1
Data Storage Patterns E-1
Access Methods E-5
Accommodating Large Data Items E-5
Reading ASCII Files E-8

r
r

1 January 1980 1-7 FDR 3058

OVERVIEW

r

Introduction

~ >

WHO NEEDS THIS MANUAL
The BASIC/VM Programmer's Guide is designed for the BASIC user or programmer who is
acquainted with the BASIC language but who is unfamiliar with Prime's BASIC/VM. If you
have never used the BASIC language, refer to commercial texts such as:

Marateck, Samuel, BASIC; Academic Press, Inc.
Waite and Mather, Editors, BASIC, Sixth Edition; University Press of New
England.

This guide defines Prime's BASIC/VM language and includes many examples of its usage.
It also introduces Prime's operating system, PRIMOS, enabling new users to access and use
the system without referring to other manuals.

DESCRIPTION OF BASIC/VM
Prime's BASIC/VM, or virtual-memory BASIC, is a high-level problem-solving language
used in research, business, and education. Its simple and easily understood language
structure makes it suitable for writing programs to solve a variety of mathematical and
string-handling problems. The language consists of commands, which are directives to the
BASIC/VM subsystem, and statements, which are fundamental components of programs.
BASIC/VM programs are composed of numbered statements and optional comments, which
are notations to the user.
The BASIC/VM compiler is an upward compatible extension of Prime's BASIC Interpreter,
employing the fast program execution and virtual memory capabilities of the Prime 350 and
higher central processors. Programs previously written in interpretive BASIC will run under
BASIC/VM without modification.

The BASIC/VM language processor
The components of the BASIC processor are:

• BASIC language compiler
• Command processor
• Statement editor

The command processor interprets and executes all system level directives. The language
compiler translates program source code into executable machine language. Tha statement
editor enables line-by-line modification of BASIC/VM programs.

Features
Below is a summary of the more important BASIC/VM performance features:

• Multiple users are supported without significant performance degrada
tion.

• BASIC/VM is compiled, rather than interpreted, providing rapid program
execution.

• Large programs may run without compromising small program efficiency.

1 J u n e 1 9 8 1 1 - 1 F D R 3 0 5 8

1 INTRODUCTION

18

• Multiple data segments and 128KB (64K word) procedure space accom
modates large programs and arrays.

• All numeric data is double-precision and floating-point.
• A special set of functions handles all matrix operations.
• "Immediate mode" enables instant calculations.
• A special editor simplifies program modification.
• A library of numeric and string system functions simplifies many computa

tions.
• Data output can be formatted with a variety of PRINT statement features,

including cursor positioning control.
• All standard file types including MIDAS (keyed-index) can be accessed in

BASIC/VM.
• CTRL-Ps and BREAKs can be trapped within the BASICV subsystem.
• Local variables and arrays are supported in user-defined functions. ,._
• A "performance measurement" feature aids in debugging and optimizing

code.

HOW TO USE THIS MANUAL
This manual has been organized to accommodate several levels of user experience.If you
know BASIC in some form and have used it on systems other than Prime's, read Section 2 to
familiarize yourself with the terms and concepts of Prime's operating system. Additional
information on PRIMOS terms and features, for example, EDITOR and FUTIL, are found in
Appendix D.
If you have previously used a Prime computer and do not need a review of system access
and PRIMOS terms, proceed to Section 3, which describes the important BASIC/VM
commands and concepts.
A capsule summary of the BASIC/VM language elements, and a complete list of com
mands and statements, appears in Section 4. Programmers who have used a Prime system
and/or Prime's Interpretive BASIC may need only Section 4 to get started.
Basic programming information, including details on program control structure, data
transfer, file handling, editing and debugging, is discussed in Sections 5 through 8. Section
9 deals with matrix and array manipulations. Section 10 contains a library of all numeric and
string system functions and describes how to define and implement user-defined functions.
Section 11 deals with the construction and evaluation of expressions. Sections 12-14
summarize the PRIMOS commands used in this guide, and all existing BASIC/VM com
mands and statements.
The Appendices contain a list of the BASIC/VM run-time error messages, the ASCII
character set, a glossary of PRIMOS concepts and terms, an overview of useful PRIMOS
features, like the EDITOR, and, several sample programs.

Compatibility with other forms of BASIC
While Prime's BASIC/VM is generally compatible with other versions of BASIC, users
should note the following variations and special implementation features:

• The ability to enter several statements on one line is not supported.
• There is no "BYE" command; "QUIT" is its synonym in BASIC/VM.
• Both the double- and single-quote characters can be used as delimiters in

BASIC/VM, for example, 'This is OK', or "This is OK". (The default
PRIMOS erase character (") should be changed to another character
before using double quotes as string delimiters in BASIC. See Section 3.)

F D R 3 0 5 8 1 - 2 1 J u n e 1 9 8 1

INTRODUCTION 1

Prime's BASIC/VM exclusively supports double-precision, floating-point
numeric data.
BASIC/VM supports the use of statement modifiers like WHILE, UNTIL,
UNLESS with statements like IF, PRINT and FOR-NEXT loops.
The assignment statement, "LET", is optional in BASIC/VM.
BASIC/VM has control features like two-branch deciders, e.g.,
IF...THEN...ELSE; logical loop control via the modifiers WHILE, UNTIL,
UNLESS; and DO...DOEND loops, all of which allow the writing of struc
tured language.

r

1 J a n u a r y 1 9 8 0 - i ql - 6 F D R 3 0 5 8

Overview of PRIMOS

INTRODUCTION TO PRIMOS
This section is an overview of Primes's operating system, PRIMOS. It introduces all the
commands BASIC/VM users will need to access and use the system. In addition, some
background information on the file management system (FMS) and other important
PRIMOS concepts are included. Appendix D of this guide supplements the information in
this section with a glossary of PRIMOS terms and a brief synopsis of several PRIMOS
utilities of interest to the BASIC/VM programmer.
Those users requiring additional information on all the subjects discussed in this section
should consult the following Prime documents:

New User's Guide To Editor And Runoff
PRIMOS Programmer's Companion
Reference Guide, PRIMOS Commands
Subroutine Reference Guide

COMMAND FORMAT CONVENTIONS
The conventions for PRIMOS command documentation are:
WORDS-IN-UPPER-CASE: Capital letters identify command words or keywords. They are
to be entered literally. If a portion of an upper-case word appears in rust, the rust-colored
letters indicate the minimum legal abbreviation.
Words-in-lower-case: Lower-case letters identify parameters. The user substitutes an
appropriate numerical or text value.
Braces { } : Braces indicate a choice of parameters and/or keywords. Unless the braces are
enclosed by brackets, at least one choice must be selected.
Brackets []: Brackets indicate that the word or parameter enclosed is optional.
Hyphen -: A hyphen identifies a command line option, as in: SPOOL -LIST
Parentheses (J: When parentheses appear in a command format, thev must be included
literally.
Ellipsis ... : The preceding parameter may be repeated.
Angle brackets < >: Used literally to separate the elements of a pathname. For example:

<FOREST>BEECH>BRANCH537XTWIG43>LEAF4.

option: The word option indicates that one or more keywords or parameters can be given
and that a list of options for the particular command follows.
Spaces: Command words, arguments and parameters are separated in command lines bv
one or more spaces In order to contain a literal space, a parameter must be enclosed in
single quotes. For example, a pathname may contain a directory having a password:

1<FOREST>BEECH SECRET>BRANCH6'.
The quotes ensure that the pathname is not interpreted as two items separated by a space.

1 J a n u a r y 1 9 8 0 o - \ „ n „' Z _ I F D R 3 0 5 8

2 OVERVIEW OF PRIMOS

CONVENTIONS IN EXAMPLES
In all examples, the user's input is rust-colored, and the system's output is not. For example:

OK, attach goudy
OK, ed seginfo
EDIT

User input usually may be either in lower case or in UPPER CASE. The rare exceptions will
be specified in the commands where they occur.

SPECIAL TERMINAL KEYS
• CONTROL The key labeled CONTROL (or CTRL) changes the meaning of

alphabetic keys. Holding down CONTROL while pressing an alphabetic
key generates a control character. Control characters do not print. Some of
them have special meanings to the computer. (See CONTROL-P, CON
TROL-Q and CONTROL-S, below.) Others are ignored.

• RUBOUT The key labeled RUBOUT has a special use in RUNOFF. It is not
generally meaningful to other standard Prime software. On some terminals
it is labeled DELETE or DEL.

• RETURN The RETURN key ends a line. PRIMOS edits the line according
to any erase (") or kill (?) characters, and either processes the line as a
PRIMOS command, or passes it to a utility such as the editor. RETURN is
also called CR or CARRIAGE-RETURN, or NEW-LINE.

• BREAK, ATTN, INTRPT: See CONTROL-P.

Special Characters
Caret {*}: Used in EDITOR to enter octal numbers and for literal insertion of special
characters. On some terminals and printers, prints as up-arrow (t).
Backslash (/) Default EDITOR tab character.
Double-quote ("J: Default erase character for PRIMOS Command Mode, EDITOR, and
RUNOFF. Each double-quote erases a character from the current line. Erasure is from right
(the most recent character) to left. Two double-quotes erase two characters, three erase
three, and so forth. You cannot erase beyond the beginning of a line. The PRIMOS command
TERM (described elsewhere in this guide) allows the user to choose a different erase
character.
Question mark (?): Default kill character for PRIMOS Command Mode, EDITOR, and
RUNOFF. Each question mark deletes all previous characters on the line. The PRIMOS
command TERM allows the user to choose a different kill character.
CONTROL-P: QUIT immediately (interrupt/terminate) from execution of current command
and return to PRIMOS level. Echoes as QUIT. Used to escape from undesired processes.
Will leave used files open in certain circumstances. Equivalent to hitting BREAK key.
CONTROL-S- Halt output to terminal, for inspection. Future input will not be echoed at the
terminal until either CONTROL-P (QUIT) or CONTROL-Q (Continue) is given. This special
function is activated by the command TERM -XOFF.
CONTROL-Q: Continue output to terminal following a CONTROL-S (if TERM -XOFF is in
effect).
UNDERSCORE (_J: On some devices, prints as a backarrow [*-)•

Note
The PRIMOS TERM command (described in Appendix D of
this Guide) allows the user to choose a different ERASE and
KILL character. If double-quotes are to be used as string

" >

'

~

-

FDR 3058 2-2 1 January 1980

OVERVIEW OF PRIMOS

r

r

r

r

delimiters in BASIC/VM, a new ERASE character must be
chosen. See Section 3 for details.

SYSTEM PROMPTS

The OK prompt
The OK prompt indicates that the most recent command to PRIMOS has been successfully
executed, and that PRIMOS is ready to accept another command from the user. The
punctuation mark following the "OK" indicates to the user whether he is interfacing with a
single-user level of PRIMOS. The prompt "OK:" indicates single-user PRIMOS (a version of
PRIMOS II); the prompt "OK," indicates multi-user PRIMOS.
PRIMOS and PRIMOS III support type-ahead. The user need not wait for the "OK," after
one command before beginning to type the next command. However, since each character
echoes as the user types it, output from the previous command may appear on the terminal
jumbled with the command being typed ahead. Type-ahead is limited to the size of the
terminal input buffer. Default is 192 characters.
PRIMOS II does not support type-ahead. The user must wait for "OK:" before entering the
next command.

The ER! prompt
The ER! prompt indicates that PRIMOS was unable to execute the most recent command, for
one reason or another, and that PRIMOS is ready to accept another command from the user.
The ER! prompt usually is preceded by one or more error messages indicating what PRIMOS
thought the trouble was.
Common errors include:

• Typographical errors
• Omitting a password
• Being in the wrong directory
• Forgetting a parameter or argument

Changing the prompt message
PRIMOS also has a long form of prompt message which displays the time, the amounts of
CPU time and I/O time used since the last prompt, and the user's stack level. (The stack
level is only displayed if it's greater than 1. Most users don't need to worry about it.) Users
can change the form of prompt message displayed at their terminal by giving the RDY
command.

RDY -LONG Sets the terminal to the long form of
prompt.

RDY -BRIEF Returns it to the standard "OK,".
RDY -OFF Suppresses prompts entirely.
RDY -ON Re-enables prompts.
RDY P r i n t s a s i ng le l ong - fo rm p romp t

message.
For example:

OK, RDY -LONG
OK 09:21:29 0.284 0.324
RDY -OFF
RDY -ON
OK 09:21:43 0.036 0.000
RDY -BRIEF
OK,

2 J a n u a r y 1 9 8 0 2 - 3 FDR 3058

OVERVIEW OF PRIMOS

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last form of pathname, in

n a 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 z ~ 4 '

* >

USING THE FILE SYSTEM

File and directory structures
A PRIMOS file is an organized collection of information identified by a filename. The file
contents may represent a source program, an object program, a run-time memory image, a
set of data, a program listing, text of an on-line document, or anything the user can define
and express in the available symbols.
Files are normally stored on the disks attached to the computer system. No detailed
knowledge of the physical location of a file is required because the user, through PRIMOS
commands, refers to files by name. On some systems, files may also be stored on magnetic
tape for backup or for archiving.
PRIMOS maintains a separate user file directory (UFD) for each user to avoid conflicts that
might arise in assignment of filenames. A master file directory (MFD) is maintained by
PRIMOS for each logical disk connected to the system. The MFD contains information about
the location of each User File Directory (UFD) on the disk. In turn, each UFD contains
information about the location and content of each file or sub-UFD in that directory.
The types of files most often encountered are shown in Table 2-1.

For a description of the PRIMOS file system and a description of the ordering of information
within files, refer to the Subroutine Reference Guide.

Pathnames
The PRIMOS file directory system is arranged as a tree. At the root are the disk volumes
(also called paritions, or logical disks). Each disk volume has a Master File Directory (MFD)
containing the names of several User File Directories (UFDs). Each UFD may contain not
only files, but subdirectories (sub-UFDs), and they may contain subdirectories as well.
Directories may have subdirectories to any reasonable level.
A pathname (also called a treename is a name used to specify uniquely any particular file
or directory within PRIMOS. It consists of the names of the disk volume, the UFD, a chain
of subdirectories, and the target file or directory. For example,

< FOREST>BEECH>BRANCH5 >SQUI RREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the sub-UFD
BRANCH5. The file's name is SQUIRREL. Figure 2-1 illustrates how pathnames show paths
through a tree of directories and files.
Disk volume names, and the associated logical disk numbers, may be found with the
STATUS DISKS command, described later. A pathname can be made with the logical disk
number, instead of the disk volume name. For example, if FOREST is mounted as logical
disk 3,

<3 >BEECH>BRANCH5>SQUIRREL

specifies the same file as the previous example. Usually each UFD name is unique
throughout all the logical disks. In our example that would mean that there would be only
one UFD named BEECH in all the logical disks, 0 through 17. When that is the case, the
volume or logical disk name may be omitted, and PRIMOS will search all the logical disks,
starting from 0, until the UFD is found. For example, if there is no UFD named BEECH on
disks 0, 1, or 2, then

OVERVIEW OF PRIMOS

r

PINE1
PINE2
BEECH
PINE3
ELM

(Not all the UFDs
are shown.)

This directory is the MFD of
the disk volume <FOREST>.

£
ORIOLE

(Not all subdirectories
and files are shown.)

This directory is the
UFD ELM.

r
This is the
file ORIOLE.

TWIG14
SQUIRREL
TWIG37

This is the
subdirectory BRANCH 5.

£

r
LEAF3
LEAF8
LEAF5

This is the
subdirectory
TWIG37.

This is the
file SQUIRREL.

This is the
file LEAF8.

TREEHOUSE
BRANCH5
This directory is
the UFD BEECH.

This is the
file TREEHOUSE.

LEAF1
LEAF3
LEAF4

This is the
subdirectory
TWIG14

This is the
file LEAF4.

Figure 2-1. Examples of Files and Directories in PRIMOS Tree-structured File System.

1 January 1980 2 - 5 FDR 3058

2 OVERVIEW OF PRIMOS

Table 2-1. Types of Files in PRIMOS
File
Type

How
Created

How
Accessed

How
Deleted

Use

ASCII,
uncompressed

Programs
SORT
COMOUTPUT

Programs
ED
(examine only)
SLIST, SPOOL
PL/I
STREAM I/D
FTN
READ/WRITE

DELETE
FUTIL DE
LETE

Source files,
text, data
records for
sequential
access

ASCII,
Compressed

ED, SORT,
Some COBOL
programs,

ED, PL/I
STREAM I/O

DELETE
FUTIL DE
LETE

Same as un
compressed
ASCII ~ >

variable-
length
binary

FORTRAN
WBRIN
subroutines,
PL/I record
I/O, SORT

FORTRAN
RDBIN
subroutines
PL/record
I/O

DELETE

FUTIL DE
LETE

Data records

Object
(BinaryJ

Translators:RPG
FTN, PMA,
COBOL, PL/I
Binary Editor
(EDB)

, LOAD or SEG
Binary Editor
(EDB)

DELETE
FUTIL DELETE
Binary Editor

Input to
SEG or LOAD,
Libraries

* >

Saved
Memory
Image

LOAD
Applications
programs

TAP, PSD
Control panel

DELETE
FUTIL DELETE

Runfiles

Segmented
runfile

SEG SEG, VPSD, DBG SEG DELETE
Control panel FUTIL TREDEL

Runfiles

Segmented
data file

SGDR$$
subroutine
MIDAS, DBMS

SGDR$$
subroutine
MIDAS
DBMS

FUTIL TREDEL
MIDAS KIDDEL

Data records
for direct
access

UFD
Sub-UFD

CREATE Contents: LISTF DELETE
FUTIL TREDEL
FUTIL UFDDEL
(contents only)

Used by
PRIMOS

MFD MAKE Contents: LISTF NO Used by
PRIMOS

Disk record
availability
table DSKRAT
file

MAKE NO NO Used by
PRIMOS

BOOT

CMDNCO

MAKE

MAKE

NO

Contents: LISTF

NO

NO

Used by
PRIMOS
Used by
PRIMOS - - >

02-6 1 January 191
FDR 3058

OVERVIEW OF PRIMOS 2

C

r
r

which the disk specifier is omitted, is called an ordinary pathname because it is very
i r e q u e n t l y u s e d . '

Pathnames vs filenames
Most commands accept a pathname to specify a file or a directory. So the terms "filename"
and pathname may be used almost interchangeably. A few commands, however, require
a filename, not a pathname. It is easy to tell a filename from a pathname. A pathname
always contains a > . while a filename or directory name never does.

Home vs current directories
PRIMOS has the ability to remember two working directories for each user: the "home
directory", and the "current directory". With few exceptions, the home and current
directories are the same. All work can be accomplished while treating them both under the
single concept of "working directory".
When the user logs in to a UFD, that UFD becomes the working directory. The ATTACH
command changes the working directory to any other directory to which the user has access
rights. A working directory may be an MFD, UFD, or sub-UFD.
The ATTACH command has a home-key option which allows the current directory to change
while the home directory remains the same. See Reference Guide, PRIMOS Commands, for
details of this operation.

Relative pathnames
It is often more convenient to specify a file or directory pathname relative to the home
directory, rather than via a UFD. For example, when the home directory is

BEECH>BRANCH5

the commands

OK, SLIST BEECH>BRANCH5>TWIG9>LEAF3

and

OK, SLIST *>TWIG9>LEAF3

have the same meaning. The symbol "*" as the first directory in a pathname means "home
directory".

Current disk
Occasionally it will be necessary to specify a UFD on the disk volume you are currently
using; that is, where your home directory is. For example, when developing a new disk
volume with UFD names identical to those on another disk, it is necessary to carefully
specify which disk is to be used, each time a pathname is given. The current disk is specified
by

<*>BEECH>BRANCH5

for example. Do not confuse " < * > ", meaning current disk, with the "*" alone, which
means home directory.

Passwords
If any directory has a password, the password becomes part of the directory name or

1 J a n u a r y 1 9 8 0 2 - 7 FDR 3058

OVERVIEW OF PRIMOS

pathname. Apostrophes are used to enclose the space between name and password (or to
enclose the entire pathname, as the user wishes). For example, if the directory BEECH had
a password, SECRET, a pathname using it might be

'BEECH SECRET>BRANCH5'

SYSTEM ACCESS

Introduction
The remainder of this section is a brief overview of some of the fundamental features of the
PRIMOS operating system. It assumes that you have previous experience on an interactive
computer system, although possibly not on a Prime computer. It also assumes that you have
read the concepts and definitions in Appendix D, or that you are already familiar with
PRIMOS terms. The commands introduced here allow you to:

Gain admittance to the computer system (LOGIN).
Change the working directory (ATTACH).
Create new directories for work organization (CREATE).
Secure directories against intrusion (PASSWD).
Remove directories which are no longer needed (DELETE).
Examine the location of the working directory and its contents (LISTF).
Look at the availability and current usage of system resources—space,
users, etc. (AVAIL, STATUS, USERS).
Create files at the terminal (CREATE; also see Editor, Appendix D).
Rename files (CNAME).
Determine file size (SIZE).

■ Examine files (SLIST).
Print files (SPOOL).
Remove unneeded files (DELETE).
Allow controlled access to files (PROTEC).
Complete a work session (LOGOUT).

ACCESSING THE SYSTEM
In order to access or work in the system, the user must first follow a procedure known as
"login". "Logging in" identifies the user to the system and establishes the initial contact
between system and user (via a terminal). Once logged in, the user has access to working
directory (work area), to files and to other system resource. The format of the LOGIN
command is:

LOGIN ufd-name [password] [nodename]
ufd-name The name of your login directory.
password Must be included if the directory has a

password.
-ON nodename Used for remote login across

PRIMENET network.
Example:

L O G I N D O U R O S N I X ^ ^
DOUROS (21) LOGGED IN AT 10'33 112878

The number in parentheses is the PRIMOS-assigned user number (also called "job" ^^
number). The time is expressed in 24-hour format. The date is expressed as mmddyy (Month
Day Year). The word NIX, in this example, is the password on the login directory.

o o 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 z _ 0

OVERVIEW OF PRIMOS

r

r

-

During login, a misspelled UFD will cause the message "Not found. (LOGIN)" to be
displayed. A misspelled or incorrect password will return the message "Insufficient access
rights. (LOGIN)." If you get either of these messages, check to be sure you're logging into the
right directory with the right password; then try logging in again. If you still have trouble ask
your supervisor for help. If the system itself is overloaded, a message such as "maximum
number of users exceeded" may be displayed. In this case, log in again later, when some
other user may have logged out.

DIRECTORY OPERATIONS

Changing the working directory
After logging in, the user's working directory is set to the login UFD by PRIMOS The user
can move (i.e., attach) to another directory in the PRIMOS tree structure with the ATTACH
command. The format is:

ATTACH new-directory
new-directory is the pathname of the new working directory.

Note
If any of the directories in the pathname have passwords, the
entire pathname must be enclosed in single quotes, as in:

A 'BEECH SECRET>BRANCH5'

To set the MFD of a disk as the working directory, the format is slightly different:
ATTACH '< volume MFD mfd-password

vol :; is either the literal volume name or the logical disk number, and mfd-password is
the password of the MFD. A password is always required for an MFD.
Recovering from errors while attaching: if an error message is returned following an
ATTACH command (for example, if a UFD is not found), the user remains attached to the
previous working directory.

Assigning directory passwords
Directories may be secured against unauthorized users by assigning passwords with the
PASSWD command. There are two levels of passwords: owner and non-owner. If you give
the owner password in an ATTACH command, you have owner status; if you give the non-
owner password in an ATTACH command, you have non-owner status. Files can be given
different access rights for owners and non-owners with the PROTEC command (see
Controlling file access).
The PASSWD command replaces any existing password(s) on the working directory with
one or two new passwords, or assigns passwords to this directory if there are none. The
format is:

PASSWD owner-password non-owner-password
The owner-password is specified first; the non-owner-password, if given follows If a non
owner password is not specified, the default is null; then, any password (except the owner
password) or none allows access to this directory as a non-owner. For example:

OK, A DOUROS NIX
OK, PASSWD US THEM

The old password NIX is replaced by the owner password US, and the non-owner password
THEM. Passwords may contain almost any characters; but they may not begin with a digit
(U-y).

1 J a n u a r y 1 9 8 0 2 - 9
FDR 3058

OVERVIEW OF PRIMOS

Deleting Directories
When directories are no longer needed they may be removed from the system to provide
more room for other uses. The DELETE command can also delete empty subdirectories irom
a given directory. The format is:

DELETE pathname
If an attempt is made to delete directories containing files or subdirectories, PRIMOS prints
the message:

The directory is not empty. (DIRECTORY-NAME)

In this case, the user must do one of two things:

• Use the LISTF command to find what files (or subdirectories) are in the
directory. Delete each entry with the command DELETE filename. Then
delete the empty directory.

■ Use FUTIL's TREDEL command (explained in appendix D) to delete files
and directory simultaneously.

Examining contents of a directory
After logging in or attaching to a directory, the user can examine the contents of this
directory with the LISTF command which generates a list of the files and sub-directories in
the current directory. The format is:

LISTF
For example, the working directory is called LAURA. The following list will be generated
when LISTF is entered at the terminal:

OK, LISTF

UFD=<MISCEL>TEKMAN>LAURA 6 OWNER

$QUERY BOILER EX LETTER QUERY OLISTF BASICPROGS
OUTLINE $OUTLINE MQL $MQL $LETTER MQL. LETTER FTO10
E X A M P L E S F U T I L . 1 0 $ F U T I L . 1 0

OK,

The number following the UFD-name is the logical device number, in this case, 6. The words
OWNER or NONOWN follow this number, indicating the user status in this directory. (See
Securing directories).
If no files are contained in a directory, .NULL, is printed instead of a list of files.

SYSTEM INFORMATION
Table 2-2 summarizes useful information you may need about the system and how to obtain
it.

FILE OPERATIONS

Creating new directories
To organize tasks and work efficiently it is often advantageous to create new sub-UFDs.
These sub-UFDs can be created within UFDs or other sub-UFDs with the CREATE

9 1 f > 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 z I U

fl

OVERVIEW OF PRIMOS 2

r

r

r

Table 2-2. Useful System Information
Item
Number of users

User login UFD

User number

User line number

User physical device
Open file units

Magnetic tape units

Disks in operation
Assigned peripheral
devices
User priorities
Other user numbers
Your phantom
usernumber

Network information

Current nodename

Records available

System time and date

Use
Indicates system
resource usage and
expected performance.
Identifies user who
spooled text file
(printed on banner).

Avoids conflict when
using files.
Lists assigned units,
with their logical aliases
and users.

Tells what devices
are available.

For logging out your
phantoms.

Tells if network is
available.

Tells how much room
is available for file
building, sorting, etc.
Performs time logging
in audit files.

Computer time used
since login

Measures program
execution time.

r
Spool queue contents

Names and status of
printers
Environment for a
printer

Tells if job has been
printed.
Tells if local printers
are fuctioning.
Gives parameters for
printer's operations.

Batch users Identifies executing
jobs, number of jobs

f L per queue.f
1 January 1980 2-11

PRIMOS commands
STATUS USERS (user list)
USERS (number of users)

STATUS, STATUS UNITS,
STATUS ME

STATUS ME, STATUS
USERS
STATUS ME, STATUS
USERS
STATUS ME
STATUS, STATUS UNITS

STATUS DEVICE

STATUS, STATUS DISKS
STATUS USERS

STATUS USERS
STATUS USERS
STATUS USERS, STATUS
ME

STATUS, STATUS NET

STATUS NET, STATUS
UNITS
AVAIL

DATE

TIME

SPOOL-LIST

PROP -STATUS

PROP printer-name
-DISPLAY
BATCH -DISPLAY

FDR 3058

]\ OVERVIEW OF PRIMOS

Table 2-2. (cont'd)
Item
Your active Batch jobs

Batch queue status
Batch queue
configurations

Use
Gives jobid, status
Gives parameters

Shows environment
of Batch system

Primos commands
JOB -STATUS
JOB -DISPLAY
BATGEN -STATUS
BATGEN -DISPLAY

Note
Information given by any STATUS command is also given by
the STATUS ALL command.

command. They can contain files and/or other sub-directories. The format is:
CREATE pathname

The pathname specifies the directory in which the sub-UFD is being created, as well as the
name of the new directory. For example:

CREATE <l>TOPS>MIDDLE>BOITCM

The sub-UFD BOTTOM is created in the sub-UFD MIDDLE, which in turn is found in the
UFD TOPS, which is in the MFD of disk volume 1.
Two files or sub-UFDs of the same name are not permitted in a directory. If this is
inadvertently attempted, PRIMOS will return the message:

Already exists. DIRECTORY-NAME
ER!

Changing file names
It is often convenient or necessary to change the name of a file or a directory. This is done
with the CNAME command. The format is:

CNAME old-name new-name
old-name is the pathname of the file to be renamed, and new-name is the new filename. For
example:

cn tools>moreJ:est oldtest

The file named MORE_TEST in the UFD TOOLS is changed to OLDTEST. Since no disk was
specified, all MFDs (starting with logical disk 0) are searched for the UFD TOOLS.
If new-name already exists, PRIMOS will display the message:

Already exists. OLDTEST
ER!

An incorrect old-name prompts the message:
Not found. MORETEST
ER!

Determining file size
The size (in decimal records) of a file is obtained with the SIZE command. This command

FDR 3058 2-12 1 January 1.980

OVERVIEW OF PRIMOS

r

r

returns the number of records in the file specified by the given pathname. The number of
records in a file is defined as the total number of data words divided bv 440 However a
zero-word length file always contains one record. The format is:

SIZE pathname
Example:

OK, SIZE GLOSSARY
14 RECORDS IN FILE

Examining file contents
Contents of a program or any text file can be examined at the terminal with the SLIST
command. The format is:

SLIST pathname
The file specified by the given is displayed at the terminal. It is possible to
suspend the terminal display as it is printing. See Setting terminal characteristics, elsewhere
in this book.

Obtaining copies of files
Printed copies of files from a line printer are obtained with the SPOOL command It has
several options, some of which will not apply to all systems, as systems may be configured
differently. The format is:

SPOOL pathname
PRIMOS makes a copy of patl in the Spool Queue List for the line printer, and displays
t h e m e s s a g e : "

Your spool file, PRTnnn, is x record[s] long.

nnn is a 3-digit number which identifies the file in the Spool Queue List, x is the number of
records in the file. PRIMOS spools out short files as soon as possible; long files receive lower
priorities.

the queue : To check the status of the Spool Queue, give the command-
SPOOL -LIST

PRIMOS returns a list of all the files on the Queue which have not yet been printed
Additional information, such as the size, destination, the PRT number, any options the
iorm-type and the login-name of the user who spooled the file are also specified For
example:

OK, spool -list
[SPOOL rev 17.1]

user prt time name size opts/# form defer at: CAROUSEL

ELLEN 001 16:42
TEKMAN 002 9:19
TEKMAN 003 9:20
SCELZA 005 9:20
SCELZA 006 9:20
SCELZA 007 9:20
TEKMAN 008 9:21

OK,

CARLSON. REPFIL 40
C O B # 0 1 3
C O B # 0 2 0
TIME TABLE.MEM 4
TIME TABLE.MEM 4
TIME TABLE.MEM 4
G O R K 6

WIDE

WHITE
WHITE
WHITE
WHITE

22:00
18-00

NEWTON

18:00 2

1 Januury 1980 2-13 FDR 3058

2 OVERVIEW OF PRIMOS

" >

Cancelling a spool request: To cancel one or more spool requests, the command format is:
SPOOL -CANCEL [PRT]n-l [,n-2...]

where n-1 , n-2 , etc., are the numbers of your spool files to be cancelled. For example:

OK, spool -cancel 47, 048, prt049
[SPOOL rev 17.0]
PRT047 has been cancelled.
PRT048 has been cancelled.
PRT049 has been cancelled.

Printing multiple copies: You can request several copies of one file by using the -COPIES
option:

SPOOL filename -COPIES n
n is the number of copies desired.
Deferring printing: The -DEFER option tells the Spooler not to begin printing the indicated
file until the system time matches the time specified with DEFER. This permits you to enter
SPOOL requests at your convenience, rather than waiting for the appropriate hour.
Specify the DEFER option by:

SPOOL filename -DEFER time
The format for time is HH [:] MM [AM/PM]. If AM or PM is given, HH:MM (the colon is
optional) must be in 12-hour format (e.g., 1000 PM). Otherwise, time will be interpreted as
24-hour format (in which 2200 is 10:00 PM and 1000 is 10:00 AM).

Printing on special forms: Line printers traditionally use one of two types of paper- "wide"
listing paper, on which most program listings appear, and 8-1/2 xll-inch white paper, which
is standard for memos and documentation. Computer rooms often stock a variety ol special
paper forms for special purposes, such as 5-copy sets, pre-printed forms (checks, orders,
invoices), or odd sizes or colors of paper. Request a specific form by:

SPOOL filename -FORM form-name
form-name is any six-character (or less) combination of letters. A list of available form
n a m e s s h o u l d b e o b t a i n e d f r o m t h e S y s t e m A d m i n i s t r a t o r . _

Changing the header: The AS option tells the spooler to print your file under a different
name. The form is:

SPOOL filename -AS alias
The alias will appear on the header and in the SPOOL -LIST display.

Printing at specific locations: Networks with several printers often arrange to have the
printers read each other's queues. It is therefore possible for a spool request to be printed
at another location, perhaps many miles distant. To insure that a spool request is printed
where you want it, use the-AT option:

SPOOL filename -AT destination
destination is a word of 16 letters or less. A list of available destination-names should be
obtained from the System Administrator. (If a destination appears in the heading oi the
SPOOL -LIST display, for example AT:NEWTON, then that destination is the default
destination for spool requests. If no destination follows "AT:", then no default has been
established, and spool requests without destinations may be intercepted by any available
printer.

FDR 3058 9 _ 1 4 1 J a n u a r y 1 9 8 0

OVERVIEW OF PRIMOS 2

r

r

Eliminating headers: To have files printed without header or trailer pages use the
-NOHEAD option:

SPOOL filename -NOHEAD
This option is particularly useful with preprinted forms, but if you're using this option
■ in a multi-user environment, you will have to ideniify your own jobs.
Multiple options: Any or all of the above options, (except -CANCEL) may be used jointly in
a single SPOOL command line. For example:

OK, spool o_17 -as ex.1 -at bldg.l -defer 22:00
[SPOOL rev 17.0]
Your spool file, PRT048, is 1 record long.

This particular command requests that the file named "0-17" he printed at the "bldgl"
printer, under the alias of "EX.1", at 10 pm (22:00).
Printing multiple files: The CONCAT command concatenates files into a single file whicn
can then be printed via the SPOOL command. The format for CONCAT is:

CONCAT new-file-name [-options]
Options govern the format of the print-out and the disposition of the files. For details see
CONCAT in the PRIMOS Commands Reference Guide.
When you give the CONCAT command without options, CONCAT goes into input mode It
asks for the names of the files to be concatenated, and prints a colon prompt. Type the
filenames, one per line. A null line (carriage return) signals the end of list. CONCAT then
goes into command mode, and prints a right-angle prompt. You can then type a QUIT to end
the session. (You can also type "INPUT" to return to input mod. For more information see
the PRIMOS Commands Reference Guide.)
A sample session might be:

OK, concat triplet
[CONCAT Rev 17.0]

Enter filenames, one per line:
: fi rs t
: second
: third
: (CR)
> q

OK,
If the file TRIPLET already exists, CONCAT asks:

OK to modify old TRIPLET?
Answering NO returns you to PRIMOS command level. Answering YES prompts a second
question:

Overwrite or append?
Answering OVERWRITE causes CONCAT to replace the old TRIPLET with a new one
Answering APPEND preserves the existing contents of TRIPLET and adds the new ones at
its end.

Deleting files
When files or programs are no longer needed they may be removed from the system to
provide more room for other uses. The DELETE command deletes files from the working

1 J a n u a r y 1 9 8 0 t i cz _ l b F D R 3 0 5 8

' OVERVIEW OF PRIMOS

directory. The format is:
DELETF pathname

SEG runfiles cannot be deleted by this command. They must be deleted by SEG's own delete
command (explained in Appendix D) or by FUTlL's TREDEL command (explained in
Appendix D).

Controlling file access
Assigning passwords to directories allows users working in a directory to. bi-classifiedas
owners or non-owners, depending upon which password they use Wi^ the ATTACH
command. Controlled access can be established for any file using the PROTEC command
This command sets the protection keys for users with owner and non-owner status in the
directory (see Assigning directory passwords above).The format is:

P R O T E C p a t h n a m e [o w n e r - r i g h t s] [n o n - o w n e r - r i g h t s] ^ ^
pathname The name of the file to be protected.
owner-rights A key specifying owner's access rights to file (ori

ginal value = 7).
non-owner-rights A key specifying the non-owner's access rights

(original value = 0).
The values and meanings of the access keys are:

key Rights
0 No access of any kind allowed
1 Read only
2 Write only
3 Read and Write
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write
7 All access

Example:

PROTEC <OLD>MYUFD>SECRET 7 1

In this example, protection rights are set on the file SECRET in the UFD MYUFD so that all
rights are given to the owner and only read rights are given to the non-owner.

Note
The default protection keys associated with any newly
created file or UFD are: 7 0. The owner is given all rights
and the non-owner is given none. Default values for the
PROTEC command, however, are: 0 0. Thus, the command
PROTEC MYFILE denies all rights to owner and non-owner
alike.

COMPLETING A WORK SESSION
When finished with a session at the terminal, give the LOGOUT command. The format is:

LCGOUT
PRIMOS acknowledges the command with the following message:

UFD-name (user-number) LOGGED OUT AT (time) (date) TIME USED =
, terminal-time CPU-time I/O-time

user-number The number assigned at LOGIN.

o - \ a 1 J a n u a r y 1 9 8 0F D R 3 0 5 8 z - i D

OVERVIEW OF PRIMOS 2

terminal-time The amount of elapsed clock time between LOGIN
and LOGOUT in hours and minutes.

CPU-time Central Processing Unit time consumed in minute-.
and seconds.

I/O-time The amount of input/output time used in minutes
and seconds.

It is a good practice to log out after every session. This closes all files and releases the
PRIMOS process to another user. However, if you forget to log out, there is no serious harm
done. The system will automatically log out an unused terminal after a time delay This
delay is set by the System Administrator (the default is 1000 minutes but most System
Administrators will lower this value).

r

r

r
1 J a n u a r y 1 9 8 0 9 1 7* l / F D R 3 0 5 8

" >

n

" >

~

~

r BASIC FEATURES

'

r

Using BASIC/VM

INTRODUCTION
This section introduces the fundamental concepts and commands of BASIC/VM. It tells you
nearly everything you need to use this version of BASIC.

ACCESSING BASIC/VM
Once you've logged into PRIMOS (see LOGIN, Section 2), you can access any of the
subsystems available under PRIMOS. To enter the BASICV subsystem, (called "BASICV
subsystem" for short) type BASICV. The system then responds with the message and
prompt, as shown here:

OK, basicv
BASICV REV18.0
>

When the right angle bracket prompt appears (>), BASIC/VM is ready to accept commands. At
this point, you can begin entering commands or program statements, or you can call up an exist
ing file to work with. To call up an existing file, type OLD followed by the filename. To create a
new file, type NEW, followed by the new filename. All input to BASIC/VM can be typed in
uppercase or lowercase. However, it's not necessary to specify either the OLD or NEW
command if you just want to execute a few commands or program statements. BASIC/VM will
automatically create a temporary file called NONAME.BASIC if you don't issue the OLD or
NEW command with a filename. You can save anything stored in this temporary file by typing
FILE.

BASIC/VM Filenames
Two types of filenames may be used for BASIC/VM files: those that end in the ".BASIC" suffix
and those that do not. Use of the .BASIC suffix is recommended because it makes program iden- 18
tification easier and it can be used with wildcards in CPL programs. (See The CPL User's Guide
for details).
When given a filename argument that does not contain the .BASIC suffix, the commands
BASICV, CHAIN, EXECUTE, LOAD and OLD will first look in your directory for a file with a
name corresponding to filename.BASIC. If such a file does not exist, the commands then look
for filename (without the .BASIC suffix) as supplied on the command line.

Be Careful
Be careful of creating files with names which are identical except for the .BASIC suffix: for
example, TEST and TEST.BASIC. Here's why. Suppose you have two programs in your direc
tory with those names. If you type the command:

EXECUTE TEST
BASICV will automatically look for, and in this case find, the program named TEST.BASIC,
which isn't what you intended. Similarly, the other commands listed above would always
perform their actions on TEST.BASIC even if you supplied TEST as the filename argument.

1 J u n e 1 9 8 1 3 - 1 F D R 3 0 5 8

USING BASIC/VM 3

r

"

Calling an OLD file
The directory from which you gave the "BASICV" command is your current working
directory. It is referred to as "the foreground" in BASIC/VM. A file that is currently open
(and being edited, created or run) in this working directory is called the "foreground" file.
Only one file can be in the foreground at any time.
When you type OLD followed by a filename (or pathname) or filename.BASIC BASICV locates
the file and makes it the foreground file. For example, if you want to call a file named JUNK to
the foreground, type:

X)LD JUNK
>

The system responds with the right angle bracket, indicating that you are now at BASICV
command level. This angle bracket is the compiler's prompt character. If a file or pathname
is not specified after OLD, the system prompts for it:

>Old
OLD FILE NAME: junk

If the file is in your current directory, a filename is sufficient; otherwise, a pathname (see
Appendix D for definition) must be specified. The latter part of this section outlines how to
access files in directories other than the current one.

18

1 June 1981 3-1A FDR3058

3 USING BASIC/VM

18

Entering a new file
To enter a new program at the terminal, type NEW followed by a name for the file you wish
to create. If a filename is not specified, BASICV will ask for one:

>new
NEW FILE NAME: test

This new file, TEST.BASIC, becomes the foreground file. It remains in the foreground until an
OLD file is called in or you decide to create another new file. If neither the OLD or NEW
commands are given, the default foreground filename, NONAME.BASIC is used.

Correcting errors
Section 2 describes the default PRIMOS ERASE (") and KILL (?) characters which are used
to correct any errors made during keyboard input. "Default" means that PRIMOS assumes
these characters are being used for character erasure and line "kill", unless you change
them. To use the double quote (") character as a string delimiter in BASIC, you will not
choose a new ERASE character, as described below.

Setting a new ERASE character
The PRIMOS TERM command is used to set new ERASE and KILL characters. TERM, like
all other PRIMOS commands, must be issued at PRIMOS command level. For example, to
make the & (ampersand) character the new ERASE character, type:

TERM ERASE &

The ampersand character can now be used to erase characters, just as the " character
usually does. "&" will remain the new ERASE character until you change it or until you log
out.
The TERM command and its options are summarized in Appendix D, Additional PRIMOS
Features.

USING BASICV COMMANDS
Once the preliminaries are out of the way, you can create a new file or work with an existing
one. A "file" in BASIC/VM can be either a "data-file" or a "program-file". A program-file,
as opposed to a data-file, is executable. "Data-file" usually refers to a collection or list of
data which contains no code, and is therefore not executable. In this guide, the term "file"
generally refers to both program- and data-files where the distinction is not important.
When the term "program" is used, however, it refers specifically to an executable file.
Remember, all saved programs are files, but not all files are programs.

Routine operations
Programming in BASIC/VM involves several routine operations. The following is a list of
such operations and the BASIC/VM commands that perform them:

C o m m a n d F u n c t i o n
CATALOG Display contents of current working directory.
LIST Display contents of foreground file.
TYPE Display contents of non-foreground file.
FILE Save a NEW or modified fi le.
R U N R u n a f o r e g r o u n d p r o g r a m .

FDR3058 3-2 1 June 1981

USING BASIC/VM

r

r

COMPILE

EXECUTE
LOAD
RENAME
PURGE
QUIT

Check for syntax errors; translate source program
into executable machine language.
Execute a compiled source program.
Combine two or more files.
Rename a foreground file.
Remove files from a directory.
Exit the BASICV subsystem.

Examining directory contents with CATALOG
The BASIC/VM CATALOG command returns a list of all the files in the current working
directory. It has several options which provide additional information about the files. The
format of the command is:

CATALOG [options]
options are one or more of the following:

Option
DATE
PROTECTION

Definition
Displays date and time the file was last modified.
Gives owner or non-owner protection attributes
(see PRIMOS, Section 2).

SIZE Gives number of records in each file.
T Y P E D e s c r i b e s fi l e t y p e (D A M , S A M , S E G S A M ,

SEGDAM, UFD; see Appendix D).
ALL Gives all of the above option information.

If no options are specified, only the filenames are displayed. Option abbreviations are
shown in rust-colored letters.
The following example shows a typical CATALOG display for a directory. The first column
displays the names of all files and sub-ufd's; the second, the number of records per file; the
third, the file type; the fourth, the owner access rights; the fifth, the non-owner access rights;
the sixth and seventh, the time and date the file was last modified.

>CATALOG A

PRINTX SAM o-.mD N:NIL
TAB SAM 0:RWD N:NIL
BASICPROGS UFD O-.RWD N:NIL
MAT SAM 0:RWD N:NIL
OUTLINE SAM 0:RWD N.-NIL
$OOTLINE SAM 0:RWD N:NIL
AGES SAM 0:FWD N:NIL
MATREX DAM 0:RWD N:NIL
ACCUM SAM 0:RWD N:N IL
SECRET SAM 0:RWD N:R
OTHER SAM 0:RD N-.NIL
COMPILEX DAM 0:RWD N:NIL
PERSONAL SAM 0:RWD N:NIL

10:48:24
10:54:12
14:50:16
11:32:44
16:54:36
14:20:36
11:41:00
11:36:12
12:17:40
9:41:52
9:40:40

10:15:40
11:17:56

9/20/78
9/20/78
9/05/78
9/20/78
8/25/78
8/07/78
9/12/78
9/20/78
9/06/78
9/22/78
,9/22/78
9/07/78
9/12/78

r
r

Displaying contents of foreground file
The LIST and LISTNH commands display all or part of the foreground file at the terminal.
LIST displays a program header including the name, date and time; LISTNH omits the
header. The format is:

1 January 1980 3-3 FDR 3058

3 USING BASIC/VM

I Uqtmh [line-number-1, ...line-number-n]
If the line number options are specified, only the indicated line numbers are displayed. If
omitted, the entire program is displayed.

Displaying non-foreground files
Non-foreground files can be listed at the terminal with the TYPE command. This is useful
for comparing programs. A TYPEd file does not become the foreground file; its contents are
merely displayed on the user terminal. To modify or run the file (if it is a program),use the
OLD command to bring it to the foreground. The format of the TYPE command is:

TYPE pathname
where pathname is the pathname or filename of a non-foreground file.
The following example illustrates a situation where the file called XYZ is in the foreground
and a list of the file AGES is needed:

>TYPE AGES
10 REM AGES
20 DATA 1952, 1956, 1957
30 READ Y1,Y2,Y3
35 INPUT 'ENTER THE CURRENT YEAR': Y
40 A1=Y-Y1
50 A2=Y-Y2
60 A3=Y-Y3
65 PRINT Al, A2, A3
70 END
>LISTNH
XYZ

Saving a new or modified file
A new file is entered into the system by typing in data or statements in proper BASIC/VM
form. Section 4 explains all statement and syntax rules. All statements are preceded by line
numbers to distinguish them from commands, like LIST and RUN, which are not preceded
by line numbers. Use the currently set ERASE and KILL characters to correct typing errors.
When the entire file is entered, FILE it to ensure that a copy of it is saved for future use. If
a new program is not FILEd, it will vanish when you leave the BASICV subsystem, or it will
be overwritten when another file is called to the foreground. The FILE command writes a
copy of the foreground file to disk under the name you specified in the NEW or OLD
sequence. If you want to change the name of the file, simply specify a new name after the
FILE command. The format is:

FILE [filename]
Once a NEW file has been FILEd, it becomes an OLD file. However, it remains in the
foreground until you replace it with another.

Compiling the source code
In order for a program to be run or executed, the source code (i.e., the statements as entered ^
from the terminal) must be translated, or COMPILEd, into executable machine language.
During the COMPILE process, the compiler parses the code for errors and produces a binary
version of the source file that can be EXECUTEd or RUN. This binary file is kept in user
memory until the EXECUTE command is issued; it may optionally be named and saved to

FDR 3058 3 _ 4 1 J a n u a r y 1 9 8 0

USING BASIC/VM 3

disk for future use by specifying a filename with COMPILE. The format of the COMPILE
command is:

COMPILE [filename]
If a filename is specified, the binary version of the foreground source file will be stored on
disk with the indicated name.

Checking for syntax errors
The COMPILE process also checks for syntax errors in a NEW or OLD foreground file.
Syntax errors include misspelling of statements or referencing an undefined function.
During this process the compiler parses each line in the file and weeds out the errors. These
errors are collectively referred to as "compile-time" errors, as distinguished from "run-time"
errors which are displayed when a program is actually executed or run. The COMPILE
process does not run the program; it translates the source code to binary form, looks for
faulty lines, displays them, and indicates what is wrong with each one.
Most error messages are self-explanatory. For a complete list of run-time error messages,
see Appendix C. Errors discovered during the COMPILE process can usually be corrected
with the simple edit procedures discussed later in this section.

Executing a program
Once a program has been successfully COMPILEd, it can be executed with the EXECUTE
command. EXECUTE accepts a pathname option; therefore, it can run either a foreground or
non-foreground program. The format is:

EXECUTE [pathname]
If the pathname of an executable binary file is specified, the program will be executed imme
diately. If a file has not previously been compiled, EXECUTE will compile and then run it.
When the EXECUTE command is given without the pathname option, the currently compiled
code in user memory is executed. If no code exists, BASICV displays: "STOP AT LINE 0".
Remember, an executable binary version of a source program must exist before the program can
be executed.

Run-time errors
The EXECUTE process displays errors that occur during run-time (execution-time). Run
time errors include faults in program logic or control, such as a READ after a WRITE to a
sequential file. Usually, run-time errors impair program execution and can often prevent a
program from running at all. Each run-time error is displayed at the terminal as it occurs,
that is, as the compiler attempts to execute a faulty statement.
Should a program not run to completion, it should be examined for logic errors and
corrected as necessary. BASIC/VM provides debugging commands for detecting various
sorts of execution control problems. See Section 7.

Running a program
Foreground source programs can also be executed with the RUN command. RUN combines
both the COMPILE and EXECUTE processes. It has no pathname option, and therefore can
run only foreground programs. RUN translates source code to executable machine language
and executes it immediately. No binary file can be stored via this process.
Like EXECUTE, RUN displays both compile-time and run-time errors. RUN prints out the
program name while EXECUTE does not. RUN will not execute the program if syntax errors are
detected. RUN also has a no-header option, NH. Execution may begin at any point in the
program by

1 J u n e 1 9 8 1 3 - 5 F D R 3 0 5 8

3 USING BASIC/VM

specifying the appropriate line number. The format of the RUN command is:
RUN[NH] [statement-number]

Remember, only the foreground file can be run with this command.

Modifying a file
Errors detected by COMPILE, EXECUTE and RUN can be corrected with simple editing
techniques. These techniques include deleting lines, inserting new lines, and retyping lines.
More advanced editing procedures are covered in Section 7. The procedures discussed here
enable you to add, delete or replace statement lines without specific editing commands.

• To delete a specific statement line, type the line number followed by a
carriage return (CR).

• To insert a new statement line anywhere in the program, type the
appropriate line number, followed by statement text. The new line is
automatically placed in correct numerical sequence.

• To replace a statement line, type the line number followed by new
statement text. The new statement will overwrite the original.

After a file has been edited or modified, be sure to FILE it so that the changes will be made
permanent.

Process of a BASIC/VM program
The fundamental steps of BASIC/VM program creation are outlined in Figure 3-1. Only the
basic features of program development are shown in this flow chart. Other program options
are covered in the text.

Sample program
The following program demonstrates the use of simple editing techniques to correct errors
displayed when the program is COMPILEd and EXECUTEd.

OK, BASICV
BASICV REV17.0
NEW OR OLD: NEW SAMPLE

>10 DATA 12.1,34,78
>20 READ X,Y,Z,A
>30 PINT X,Y,Z
>40 END
>COMPILE
30 PINT X,Y,Z

INVALID WORD IN STATEMENT
>30 PRINT X,Y,Z
>COMPILE

>EXECUTE
END OF DATA AT LINE 20

>15 DATA 10,20,30

FDR 3058 3 _ 6 1 J u n e 1 9 8 1

USING BASIC/VM 3

r

r

r

-

r

ENTER OLD
OR

NEW COMMAND

PURGE

ENTER OLD
FILENAME

COMPILE AND
EXECUTE
OR RUN

DEBUG
(FIX ERRORS)

NEW

YES

Figure 3-1. Process of a BASIC/VM Program

ENTER NEW
FILENAME

INPUT
TEXT

SAVE (FILE)
PROGRAM

EDITING
PROCESS

1 January 1980 3-7 FDR 3058

3 USING BASIC/VM

>CCMPILE

> E X E C O T E _ 0
1 2 . 1 3 4 7 8
>FILE
>QUIT

OK,

Combining two or more programs
The LOAD command may be used to combine two or more BASIC/VM programs tofotma
single executable program. Usually, LOAD is employed when appending an external hie to
a foreground one. Line numbers common to both programs are overwritten in the fore
ground file by those in the external (LOADed) program; otherwise, line numbers are
interwoven.
If a binary version of a program (compiled source code) is LOADed, it is stored in user
memory but does not become part of the foreground file. If the EXECUTE command is
issued subsequent to this LOAD, the just-LOADed binary code will be executed.
The following examples illustrate two ways in which programs can be combined with
LOAD.
Source files:

G A M E C A L C
1 0 P R I N T 1 1 0 B = 2 3
20 REM A MATH GAME 120 PRINT A,B
30 A=7

" >

200 END
100 PRINT A*A

>OLD GAME
>LOAD CALC

Foreground file now contains:

10 PRINT

100 PRINT A*A
110 B=23
120 PRINT A,B

1 GAME is now in foreground

200 END

o o 2 J a n u a r y 1 9 8 0
F D R 3 0 5 8 6 ~ °

USING BASIC/VM 3

r

Source files:

PROG
10 PRINT 'A'
20 A=l
30 B=2
40 PRINT A*B

>OLD PROG
>LOAD PROG1

Foreground file now contains:

10 PRINT
15 REM PROG 1
20 A=3
30 B=5
35 Oil
40 PRINT A*B
45 PRINT A,B,C
55 END

PROG1
10 PRINT
15 REM PROG1
20 A=3
30 B=5
35 C=ll
45 PRINT A,B,C
55 END

1 PROG is now in foreground

r
Renaming a foreground file
The name of a foreground file can be changed with the RENAME command. The format is:

RENAME new-filename
Only the new-filename of the file need be specified. Note that this command merely
changes the name of the foreground file and does not change the name of the file on disk
unless it is FILEd. When the renamed file is FILEd, two copies of the same file will exist: the
original file and the renamed file.

Deleting a file from a directory
To remove a file from a directory, use the PURGE command. The format is:

PURGE [pathname]
If no pathname is specified; the foreground file is deleted, otherwise the file indicated by
pathname is removed.

EXITING THE BASICV SUBSYSTEM
To exit the BASICV subsystem and return to PRIMOS command level, use the QUIT
command.
QUIT is issued at BASIC/VM command level and is the only way to return to PRIMOS
command level, barring any access violations or disk I/O errors which may occur during
program execution. This command closes any open files including those opened by
BASIC/VM and PRIMOS), protecting them from accidental damage or modification. (QUIT
does not close PRIMOS unit 63, the COMOUTPUT file unit. See Appendix D, Additional
PRIMOS Features.)

1 January 1980 3-9 FDR 3058

3 USING BASIC/VM

ADDITIONAL INFORMATION
The following information deals with additional BASIC/VM features which may be of
interest to some users. These features include:

• Running BASIC/VM programs from PRIMOS level
• Using modes of operation (or interpretation) in BASIC/VM
• Accessing files in directories other than the current working directory
• Using the BASIC/VM ATTACH command to change the working directory

RUNNING PROGRAMS FROM PRIMOS
A previously created and filed BASIC/VM program can be run from PRIMOS command
level with the BASICV command. The format is:

B A S I C V p a t h n a m e ^ ^ ^
where pathname is either the source or binary form of a BASIC/VM program. The specified
file is then run, leaving the user at PRIMOS command level. Below is a BASIC program run
from PRIMOS command level.
The following is a BASIC/VM program, called "T":

5 J=0
10 PRINT 'SAMPLE1
20 FOR 1=1 TO 10
30 J=J+I
4 0 P R I N T I , J A
50 NEXT I
60 PRINT 'END OF LOOP'
70 PRINT 'YOU ARE NOW AT PRIMOS COMMAND LEVEL'
80 END

The program is now run from PRIMOS command level:

OK, BASICV T
SAMPLE
1 1
2 3
3 6
4 1 0
5 1 5
6 2 1
7 2 8
8 3 6
9 4 5
1 0 5 5
END OF LOOP
YOU ARE NOW AT PRIMOS COMMAND LEVEL
OK,

MODES OF OPERATION IN BASIC/VM
There are three ways in which BASIC/VM can interpret terminal input:

• As a command (command mode)
• As an executable statement (immediate mode)
• As a line-numbered statement (program-statement mode)

FDR 3058 3 _ 1 Q 1 J a n u a r y 1 9 8 0

USING BASIC/VM 3

r
*

1

r
r

When input errors prevent the compiler from performing the requested action, an ap
propriate error message is displayed.

Command mode
Commands are directives to the BASICV system. If a command like -RUN" is issued in
response to the > prompt, the compiler interprets it as an order to perform some action, and
executes it immediately. More command-related information appears in Section 4.

Program-statement mode
Statements entered with preceding line numbers are immediately stored in user memory
and are assumed to be part of a program unless otherwise indicated. These statements are
not compiled or executed until the compiler is instructed to do so. For more details on
program composition and statement syntax, see Section 4.

Immediate mode
If a statement is entered without a line number, the compiler checks to see if it is executable,
then attempts to execute it. Any errors in statement syntax are displayed immediately.
Statements without line numbers are not stored in user memory and thus cannot become
part of a program. Immediate mode is useful for debugging programs, for testing certain
lines of code, and for performing quick calculations. Immediate mode is also referred to as
"desk-calculator" mode.

Sample session
The following example depicts an immediate mode terminal session. User input is shown in
rust-colored letters for clarity. (Note the absence of line numbers.)

>A=12

>B=25
>C=A+B
>PRINT C

37
>DIM A(3)
>A(1)=13
>A(2)=45
>A(3)=56
>PRINT A
12

>MAT PRINT A
1 3 4 5 5 6

>CLEAR
>PRINT A
0
>PRINT B

>PRINT C

1 J a n u a r y 1 9 8 0 3 _ H p m m m

USING BASIC/VM

0
>MAT PRINT A
UNDEFINED MATRIX AT LINE 0
>QUIT

ACCESSING FILES IN REMOTE DIRECTORIES
Accessing files in BASIC/VM is similar to accessing files in PRIMOS. (See Section 2.)
However, there are some important variations. The following examples illustrate
BASIC/VM file access procedures for all possible file location situations.

Accessing a file in the current UFD
To access a file called OLDF1 in the current UFD the format is:

NEW OR OLD: OLD OLDF1

Accessing a file in a sub-UFD in current UFD
To access a file called OLDF2 in a sub-UFD called SUBS, located in the current directory,
the format is:

NEW OR OLD: OLD *>SUBS>OLDF2

The right angle brackets (>) indicate that the file is contained within the sub-UFD. The
asterisk (*) means "current UFD" and must be included in the pathname.

Accessing a file on a remote disk
The general format of this procedure is:

(< volume >) .OLD (<ldisk>] pathname

The parameter volume is the name or number of the disk on which the file is stored ldisk is
the name of the logical disk (see Appendix D for definition) which may be specified instead
of a volume name or number. The angle brackets are required, pathname is the pathname
of the file to be accessed.
For example, to access a file called GORDON listed in the UFD REV17 on a disk called
SOFTWR, the following pathname would be typed:

OLD <SOFTWR>REV17>GORDON

If the disk number was 3, the following format would be used:

OLD <3>REV17>GORDON

If passwords are required on either the UFD or file, they are inserted after the directory-
name requiring the password. Example:

OLD <3>REV17 NEW>GORDON

In this case, the UFD REV17 is protected by the password NEW.

Attaching to a directory
The ATTACH command, discussed in Section 2, is used in BASIC/VM as well as in PRIMOS.

~ >

FDR 3058 < i _ \ 2 1 J a n u a r y 1 9 8 0

USING BASIC/VM 3

r

r

However, like all BASICV commands, ATTACH cannot be abbreviated.

Attaching to a sub-UFD in the current UFD
To ATTACH to a sub-UFD in the current UFD, the asterisk symbol is used to indicate the
current directory. For example, to attach to a sub-UFD called PLAYS in the current
directory, the format is:

ATTACH *>PLAYS

Attaching to a sub-UFD in another UFD
When attaching to a sub-UFD under a UFD other than the current directory, the UFD name
and password, if any, must be specified. Example:

ATTACH LARRY>TEST

The UFD-name is LARRY and the sub-UFD-name is TEST.

Attaching to a UFD or sub-UFD on another disk
Attaching to a UFD or sub-UFD on another disk is the same as in PRIMOS. The volume name
of the remote disk, or a logical disk number, (ldisk) must be specified. For example, to attach
to a sub-UFD called LILY listed under a passworded UFD called FLOWER on logical disk
number 5, the format would be:

ATTACH '<5> FLOWER SNEEZE>LILY'

The password on FLOWER is "SNEEZE" and is required in the pathname.

1 J a n u a r y 1 9 8 0 3 - 1 3 FDR 3058

Language elements
" >

'

" >

INTRODUCTION
The BASIC/VM language consists of the following elements:

• COMMANDS, which give directions to the system
• STATEMENTS, which make up programs
• EXPRESSIONS, which are combinations of operators and operands:
• OPERANDS, which are data elements including:

Arrays
Constants
Functions
Matrices
Variables

8 OPERATORS, of four types, which manipulate operands:

Arithmetic
Logical
Relational
String

All of these language elements are defined in this section. Additional information may be
found in other sections of this manual as indicated.
BASIC/VM uses the full ASCII character set including:

• Letters from A-Z
• Digits from 0-9
• Special characters (see list in Appendix B)

OPERANDS
Within the context of a program, constants, functions, (or function references), variables and
arrays, are all referred to as "operands". Operands are operated on, or manipulated, by
operators, such as addition (+) or subtraction (-). Operators tell a program how to evaluate
specific operands. A description of each type of BASIC/VM operand follows.

Constants
A constant can be either a number or a quoted literal string. Its value does not change during
the execution of a program.
Numeric constants.-Numeric constants are positive or negative integers (whole numbers or
decimal numbers), possibly in scientific notation. A numeric constant may have an optional
sign (+ or -), a decimal point or an exponent specifier. If no decimal point is indicated in a
number, BASIC/VM assumes it to be located immediately to the right of the right most digit.
All numeric data in BASIC/VM is double-precision and floating-point, with a level of
accuracy to 13 significant figures in the mantissa and 3.5 significant figures in the exponent.

1 J a n u a r y 1 9 8 0 4 _ 1 FDR 3058

4 LANGUAGE ELEMENTS

Some examples of numeric constants are:
8.88
-123
2.5E-2

Exponential notation: Numbers usually expressed in scientific notation are represented in
"E notation", also known as "floating-point notation", in BASIC/VM. The general format for
this representation is:

± xxE ± nn
xx is a whole or decimal number up to 13 digits in length; E is the exponent specifier (base
10) and nn is a 1- or 2-digit number representing a power of 10. The expression "10E6"
means: "10 multiplied by 10 to the power of 6 or 10 times 10 to the sixth power".
As shown in the format, the plus (+) sign is optional: however, negative components must be
preceded by a minus sign.
Exponential representation is quite flexible. For example, .001 can be expressed as 1E-3, or
.01E-1, or 100E-5, to name a few. BASIC/VM automatically prints numbers with more than
13 digits in E notation. Exponent signs are printed after the exponent specifier, as in 1E-04,
and 1E+04.
Literal string constants: String constants are a sequence of characters enclosed in quotes (')
or double quotes ("). All spaces enclosed within the quotes are included in the string value.
A "null" string contains no characters or spaces and is represented as ' ' or " ". The
maximum length of a string constant is 160 characters. The following are sample string
constants:

'X,Y,Z'

"$123.56"

"Lou's sneakers"

Variables
Variables represent locations in memory where data values are to be stored. Values can be
assigned with assignment statements, for example, A=12, or LET A=12, and as a result of
calculations performed during program execution. BASIC/VM supports both numeric and
string scalar variables, and numeric and string subscripted variables, also known as arrays.
Table 4-1 gives examples of legal and illegal variables in BASIC/VM.
Numeric scalar variables: Numeric scalar variables consist of a single letter (A-Z) optionally
followed by a single digit (0-9), for example, A6. The maximum length of a numeric variable
name is two characters. There are 286 possible combinations of letters and numbers.
Numeric scalar variables, also called "simple" numeric variables, are initialized to 0 by the
BASICV subsystem before program execution. However, it is good programming practice to
initialize all variables at the begining of a program.

A2 \
\ (numeric scalar variables)

X4 J
String scalar variables: String scalar variables consist of a single letter (A-Z) followed by an
optional digit, and a dollar sign($), for example, A$ or A2$. String scalar variables, also
called "simple" string variables, represent character strings of various lengths and are _
initialized to null at the beginning of the program in which they are defined.

B$ \
> (string scalar variables)

A2$ J

F D R 3 0 5 8 4 - 2 1 J a n u a r y 1 9 8 0

LANGUAGE ELEMENTS 4

r

r

Numeric subscripted variables: Numeric subscripted variables (also called "array ele
ments") are simple numeric variables followed by one or two values enclosed in paren
theses. These subscripted variables name elements in an array or matrix.
Arrays and matrices are generally visualized as having rows and columns, similar to a table.
For instance, the subscripted variable. B(l,2), represents the element that exists in row 1,
column 2 of array B. Arrays and matrices are defined by the DIM statement or a MAT
statement. See Section 9 for details.
Referencing array elements: A singly-subscripted variable, for example. Bfl), refers to an
element in a one-dimensional array. In this case. "B" is known as an "array name." A
variable with two subscripts, for example. C(l,2). refers to a particular element in the two-
dimensional array named C.
In a doubly-subscripted variable, the first parenthesized value represents the row location,
the second, the column location of a particular element in a two-dimensional array or
matrix.
String subscripted variables: String subscripted variables are simple string variables
followed by one or two values enclosed in parentheses. String array elements are repre
sented by singly- or doubly-subscripted string variables. String arrays and matrices are
dimensioned exactly as are numeric arrays and matrices. See Section 9 for details.

A(4) one-dimensional numeric array element
A$(3,4) two-dimensional string array element

Numeric and string matrices: In BASIC/VM, a matrix consists of those elements of an array
that have non-zero subscripts. For example, the array dimensioned by the statement. "DIM
A(3)". has four elements: A(0). A(l). A(2). and A(3). Matrix A consists of only three
elements: A(l). A(2) and A(3).
Avoiding name conflicts: A simple variable and an array may share the same name within
a program, for example. AS. When an array element is referenced, subscripts are required;
for example, the first element in the string array AS is named by AS(1). When a scalar
variable is referenced, no subscripts are used. Thus the use of subscripts distinguishes
scalar variable from array references within the same program.
Both an array and simple scalar variable may have the same name, but the same array name
may not be used for both a one- and two-dimensional array. For example. A(l) and A(l,2)
cannot appear in the same program.
Local variables: The LOCAL statement can be used to declare certain variables and arrays
local to the function definition in which they appear. This distinguishes them from global
variables which appear outside of a function definition. Local variables and arrays are
static, preserving their values over many calls to a particular function. Unlike global
variables, they cannot be PRINTed in immediate mode or after a PAUSE or BREAK. See
Section 10 for details.

Table 4-1. Legal and Illegal Variables
Type Legal Il l(jgal
Numeric scalar A2 ABl AR

X4 X14 BZ
String scalar B$

A2$
B2S
AS

ABS
A21S

AB3$

Numericr subscripted A2(l) A(1.2) Al2(l) A(l,2, l)
A(l) A2(l,2) AB(1,2)

r String subscripted A$(l) AS(1,2) A12S('1,2)

January 1980

A2$(4) A2$(l,2] ABS(l)

\ 4-3 FDR 3058

4 LANGUAGE ELEMENTS

Functions
BASIC/VM provides a variety of numeric and string system functions such as TAN, COS.
and LEN, to manipulate numeric and string data. Users may also define their own numeric
and string functions, known as user-defined functions. See Section 10 for details.
Numeric functions: Numeric functions are identified by a three- or four-letter name,
followed by parenthetically enclosed numeric items or parameters. Function definitions
specify an operation, or a series of operations, to be performed on these listed items to
produce a single value. Table 10-2 lists all available numeric functions. User-delined
numeric functions are identified by the letters FN, followed by a simple numeric variable,
as in FNA, FNA8.
String Functions: String functions are identified by a three- to five-letter name, followed by
parenthetically enclosed string or numeric parameters. Strin0 functions are used to return
information about strings and portions of strings, to convert a numeric item to its correspon
ding string representation, and to represent a string item in ASCII code. All string system
functions are listed in Table 10-2. User-defined string functions are named by the letters FN
followed by a simple string variable, as in FNQ$.

OPERATORS
Within a program, operands are combined with operators to form "expressions". Operators
indicate how the operands are to be evaluated. The four types of operators are arithmetic,
relational, logical and string, and are listed below. The use of operators in evaluating
expressions is detailed in Section 11.

Example
A + B, +A
A-B. -A
A*B
A/B
A*B. A**B

Arithmetic Operators
Arithmetic (or numeric) operators are of two types, unary or binary. Unary operators
require only one operand, for instance, +7. They indicate the sign of the number. Binary
operators require at least two operands, for instance, Al*7, The following table lists the
arithmetic operators for BASIC/VM.

Operator Definit ion
+ Addi t ion (unary posi t ive)

Subtraction (unary negative)
* M u l t i p l i c a t i o n
/ D i v i s i o n
" or** Exponentiation (involution)

MOD Remainder from division
(m o d u l u s) A M O D B

M I N S e l e c t l e s s e r v a l u e A M I N B
MAX Selec t greater va lue A MAX B

Note
The operation commonly known as "exponentiation" is also
referred to as "involution", according to the latest ANSI
standard for BASIC. However, the term "exponentiation" is
used exclusively throughout this book.

Relational operators
Relational operators are used with conditional statements and statement modifiers. (See
Section 6 for details.) There are six relational operators:

FDR 3058 4-4 1 July 1982

LANGUAGE ELEMENTS 4

Opera
<
>

ors Meaning
Less than
Greater than

Example
A < B
A > B

: ;)

Equal

Less than or equal

A$=B$

AS < =C$

: :)
Greater than or equal A = > C

i<\ Not equal A < > D

String operators
String operands (items) may be combined with the concatenation operator (+) to form string
expressions. Concatenation means "append one string to another". For example, if AS=
"CORN"and B$= 'FLOWER", the expression, A$+B$ returns the string: "CORNFLOWER".
String items may also be combined with relational operators to form string relational
expressions. String operands may NOT be used with arithmetic (numeric) operators, nor
may numeric operands be concatenated to string operands in the same expression. See
Section 11 for details.

Logical operators
Logical operators are connectives for relational expressions, allowing the testing of many
relations at once. The table below lists logical operators and their meanings.

O p e r a t o r M e a n i n g E x a m p l e
AND True if both A and B are true A AND B
OR True if either A. B or both are true A OR B
N O T T r u e i f A i s f a l s e N O T A

EXPRESSIONS

Definition
Expressions are made up of operands and operators and can be evaluated to produce a
single result. Expressions can be numeric (arithmetic), for example. A+B; string, for
example. CS+X$=Y$; relational, for example. A < =C + D: or logical, for example, A > C AND
B=l. See Section 11 for details on expression composition and evaluation.
Evaluation
Expressions are evaluated according to operator priority. The priority list from highest to
lowest for BASIC/VM appears below. Within each level the evaluation order is from left to
right.

() parenthetical expressions
system and user-defined functions

(or **) exponentiation
NOT. unary (+ -)
*, /. MOD
+. —
MIN. MAX
relationals (=. > . < . = > . < =, < >)
AND
OR

1 J u l y 1 9 8 2 4 _ 5 FDR 3058

4 LANGUAGE ELEMENTS

COMMANDS
BASIC/VM system commands direct the BASICV subsystem to perform some immediate
operation. Unlike statements, they are not preceded by line numbers. Some commands have
optional parameters or arguments to further define the operation which they perform A list
of all BASIC/VM commands appears at the end of this section. For complete BASIC/VM
command format information, see Section 13.
STATEMENTS
When statements are included in a program, they are preceded by line numbers. When they
are used without line numbers (in Immediate Mode), they are executed immediately.
Example:

PRINT 12*154
1848

Results are obtained instantly, just as if you were using a calculator.
Statement syntax
Statements must adhere to the following rules:

18 | • Each statement may be entered in either uppercase or lowercase letters.
• Each statement must be contained on one line.
• Statements must not exceed 160 ASCII characters in length.
• Portions of the statement (string literals) which are to be processed

verbatim must be enclosed in quotes.
• Statements cannot be abbreviated.

Statements in a program should be separated from their identifying line numbers by a blank
space to avoid misinterpretations.
Statement numbers
Statement numbers are one lo five digit integers ranging from 1 to 99999. Successive
statements are generally numbered in ascending order. It is recommended that statements
be numbered in increments of ten, as this makes adding new statements easier. A statement
may be added between lines 10 and 20. for example, without changing the numbers of the
other statements. Given the following program:

10 PRINT 'NAME'
20 PRINT 'ADDRESS'
30 PRINT 'CITY'
>RUNNH
NAME
ADDRESS
CITY

A line may be inserted between lines 10 and 20 and another between 20 and 30, as indicated:

>15 PRINT
>25 PRINT
>RUNNH
NAME

ADDRESS

CITY

4 _ fi 1 J u n e 1 9 8 1F D R 3 G 5 8 * ° ;

LANGUAGE ELEMENTS 4

The program now contains five statement lines instead of three.

Comments
Programs may contain comments or remarks which serve as explanatory notes for the
reader's benefit. They are preceded by the letters REM or by the exclamation mark, (!).
Comments may appear by themselves on separate REM lines, or they may be appended to
a line of code with the exclamation mark. Comments may contain lower case characters.

10 REM Remarks can appear like this-

20 1 or like this; or appended to a line as in:

30 X=l ! set x equal to one

LIST OF COMMANDS AND STATEMENTS
The tables briefly describe all available BASIC/VM system commands and language state
ments. Also included are references to other sections in this guide where more information on
each command and statement may be found. Table 4-2 contains the list of commands, Table 4-3
the list of statements. Command abbreviations are in rust. 18

Table 4-2. List of Commands
Command Description Sections
ALTER Allows editing of a single line in a

program using the special subcommands
listed in Table 13-1.

7,13

ATTACH Changes location of working directory in
BASIC subsystem; similar to PRIMOS ATTACH
but works in BASIC environment.

3,13

BREAK |™ j Sets and unsets breakpoints at specified 7,13
line numbers for debugging. Maximum
of 10 breakpoints may be set. See LBPS.

CATALOG Lists all filenames under current UFD;
optionally returns other file-related
information.

3,13

CLEAR Resets all previous numeric values to 0,
all string values to null; deallocates any
previously defined arrays and closes
all open files.

5,13

COMINP Calls a specified command file to
foreground; reads and executes
commands until a COMINP TTY is
reached.

6,13

COMPILE Translates a source file into
executable binary form; displays
syntax errors.

3,13

CONTINUE Resumes program execution after
a breakpoint or PAUSE.

7,13

DELETE Deletes specified statement lines. 7,13
EXECUTE Executes compiled code and displays

run-time errors, if any.
3,13

EXTRACT Deletes all except specified lines. 7,13

18

1 June 1981 4-7 FDR3058

LANGUAGE ELEMENTS

18

181

Command
FILE

LBPS
LENGTH

LIST[NH]

LOAD

NEW

OLD

roN
OFF
HIST

[TABLE J

PERF

PURGE

QUIT

RENAME
RESEQUENCE
RUN[NH]

TRACE {qpF

TYPE

Description
Saves all input and modifications
to current (foreground) program
file; writes file to disk.
Lists currently set breakpoints.
Reports total number of lines in
current program.
Displays the contents of current
file at terminal. NH option
suppresses header or program title.
Merges or adds an external program
to current (foreground) program.
Indicates to compiler that a new
file is to be created in foreground.
New filename must be specified.
Calls pre-existing file to current
working area (foreground) and makes it
current file.
Turns performance measurement feature
ON or OFF; issued prior to program
compilation. HIST or TABLE options display
measurement data in table or histogram
form, respectively.
Deletes specified file from UFD; file
must first be closed.
Returns control to PRIMOS from
BASICV command level.
Changes name of foreground file.
Renumbers statements in current file.
Initiates compilation and execution
of current source program.
Tests program logic; line numbers
are displayed as corresponding statements
are executed.
Displays contents of specified
non-foreground file at terminal. TYPEd
file does not replace file currently
in the foreground.

Sections
3,13

7,13
7,13

3,13

3,13

3,13

3,13

7,13

3,13,14

3,13

3,13
7,13
3,13

7,13

3,13

Table 4-3. List of Statements
Statement
ADD #

CALL
CHAIN

CHANGE

CLOSE #
COMINP

Description
Adds record to MIDAS file opened on specified
file unit.
Calls external declared subroutines.
Transfers program control to specified
external program.
Converts ASCII character string to one-
dimensional numeric array or vice-versa
Closes files on specified unit(s).
Stops execution of current program: calls
specified command file to foreground.

Sections
8,14

6,14
6,14

10,14
APPB
8.14
6,13,14

FDR3058 4-8 1 June 1981

LANGUAGE ELEMENTS 4

r

\

Statement
DATA

DEFINE FILE

DEF FN

DIM

DO...DOEND

ELSE DO

END

ENTER^]

FOR

GOSUB

GOTO

IF

INPUT[LINE]

LET
LOCAL

MARGIN {OFF

MAT

MAT

/INVMAT Itrn
MAT INPUT

MAT PRINT

Description
Contains numeric and string constants
to be accessed by READ statement.
Opens a file of specified type on indicated
unit number with optional access
restrictions (APPEND, READ, SCRATCH).
Without FNEND, defines one-line function
with numeric or string scalar variable
arguments; with FNEND, defines multi-line
function.
Defines dimensions of numeric or string
array or matrix.
Defines a set of statements to be executed in
association with IF-THEN statement pair.
Optional alternative to DO-DOEND statement
set.
Terminates program execution; no message
is displayed.
A timed input statement: with ft option,
returns user-number assigned at LOGIN;
also sets time limit on input.
Defines beginning and end of loop index;

Sections
5,14

8,14

10,14

9,14

6,14

6,14
6,14

5,14

used optionally with STEP, WHILE, UNTIL, NEXT.
Transfers program control to internal
subroutine: always used with RETURN.
Transfers program control to specified
line; can be used conditionally
with IF or ON.
Makes executable statements conditional;
can be used with GOTO, THEN, ELSE DO, etc.
Requests data to be entered from terminal.
LINE option accepts entire line, including
commas and colons, as one entry.
Assignment statement: optional.
Declares listed variable(s) or array name(s)
to be "local" to the current function definition.
Changes width of output lines. OFF option
turns off all margin restrictions.

6,14

Sets initial value of matrix elements
to zero, identity, null or one.

Performs addition, subtraction or
multiplication of two matrices.
Calculates INVERSE or TRANSPOSE values
of one matrix and assigns them to another.
Reads data from a terminal and assigns
values to elements of specified
matrix or matrices.
Prints an entire matrix (or matrices)
at terminal.

6,14

6,14

6,14

5,14

5,14
4,10

5,14

9,14

9,14

9,14

9,14

9,14

1 January 1980 4-9 FDR 3058

LANGUAGE ELEMENTS

Statement
MAT READ

MAT READ [*] #

MAT WRITE #

NEXT
ON (GOSUB1

[GOTO)
[ELSE GOTO]

ON END § GOTO

ON ERROR [#]
GOTO

ON QUIT GOTO

PAUSE

POSITION §

PRINT

PRINT USING

QUIT ERROR
OFF

RANDOMIZE

READ

READ [KEY] #

READ LINE §

READ [*] #

REM

Description
Reads values from data list(s): assigns
them to elements of matrix or matrices.
Reads data from external file and assigns
them to a specified matrix or matrices.
Optional * forces all data in current
record to be read before new one is read.
Writes an entire matrix (or matrices) to
a file on specified unit.
Defines end of loop begun by a FOR statement.
Transfers program control to a subroutine
(GOSUB) or to one of a list of statement
numbers (GOTO). "ELSE GOTO" option routes
control to another statement line if ON
condition is unsatisfied.
Establishes a line number to which program
control will transfer when an END OF FILE
occurs in disk file opened on specified unit.
Defines statement line to which program
control will transfer when a run-time
error occurs, in disk file, if # specified.
Traps QUITs generated by hitting
CRTL-P or BREAK key during program execu
tion; routes control to indicated line number.
Suspends program execution; to
resume execution, type CONTINUE.
Positions internal record pointer to a specified
record in DA disk file.
Can be used with LIN.TAB.SPA options
to print formatted data at terminal.
Prints data output formatted according
to format strings. See Table 14-2.
Turns off all QUIT traps previously
set by ON QUIT GOTO statement.
Used to reset random number generator
(RND function) during or prior to program
execution.
Reads numeric or string values from a
DATA statement in a program.
Reads data associated with»record key
in MIDAS file opened on indicated unit.
Reads an entire line of disk file text,
including commas, and colons, as one
data item.
Reads from current record in file
open on specified unit; pointer then
positions to next sequential record.
(* option holds pointer at current record
after READ is complete.)
Indicates a remark to the user.

Sections
9,14

8,9,14

8,9,14

6,14
6,14

6,14

7,8,14

6,14

7,14

8,14

5,13,14

5,14

6,14

10,14

8,14

8,14

8,14

8,14

4,14

FDR 3058 4-10 1 January 1980

LANGUAGE ELEMENTS 4

~

r«

Statement
REMOVE #

REPLACE #

RESTORE (#
$

RETURN

REWIND #

SUB FORTRAN

WRITE #

WRITE USING #

Description
Removes specific key from MIDAS file;
if primary key, removes associated data
record also.
Deletes data files referenced by a
segment directory. Moves pointer from
deleted file to another file; zeroes old
pointer.
Reuses list of data items beginning with
first item in lowest numbered DATA
statement; # option reuses numeric items;
$ option reuses string items only.
Returns control from subroutine to statement
following GOSUB statement.
Repositions record pointer to top of DAM or
MIDAS file open on specified unit.
Declares subroutines observing the
FORTRAN calling sequences for use
from a BASIC/VM program.
Writes data to current record of disk file
opened on specific unit.
Generates formatted output including
tabs, spaces, column headings; writes
output to ASCII disk file opened on
specific unit.

Sections

8,14

8,14

5,14

5,14

8,14

6,14

8,14

8,14

-

1 June 1981 4-11 FDR3058

PROGRAMMING
IN BASIC/VM

Data I/O

INTRODUCTION
This section covers data exchange between programs and terminals. The first part of this
section deals with data input—the process of providing data to a program either from within
a program or from the terminal. The statements involved in data input are:

S t a t e m e n t D e s c r i p t i o n
LET Assigns values to variables.
DATA Provides data values for associated READ statement.
READ Reads values from DATA statement into a list of variables.
RESTORE Tells program to reuse data values from previous DATA

statement.
INPUT Requests user input from terminal.
INPUTLINE Accepts entire line of terminal input as one data item.
ENTER[#] Timed input statement: § option assigns user login number to

an indicated variable.
The second part deals with data output—the process of getting data from a program to a
terminal or other output device. The following statements make it easy to obtain neatly
formatted data output:

Statement
PRINT

PRINT (TAB]
i LIN ;
(spa)

print using

Description
Prints data values verbatim or prints values associated with
specified variable.
Prints data with spacing conventions (tabs, blank lines, etc.)
dictated bv modifiers.

Prints data according to format indicated by special format
characters.

MARGIN Alters data output line length by increasing or decreasing
right margin from the default (80 character positions).

Data exchange involving the transfer of information between programs and external data
files is covered in Section 8. File Handling.

DATA INPUT STATEMENTS

Assignment statement
The LET statement can be used to preface statements that assign values to variables and
array elements. However, the use of LET is optional in BASIC/VM; it is not essential to the
assignment process. The statements "LET A=5" and "A=5" are equivalent.

Multiple assignment
The multiple (simultaneous) assignment statement allows more than one variable to be
assigned the same value. It also enables the use of "old" or previously assigned values in
calculating a target value for a subscripted variable (array element). The general format is:

var-1, var-2 [,...,var-n] = expr

1 January 1980 5-1 FDR 3058

5 DATA I/O STATEMENTS

var-l var-2 etc., are variables and/or array names; expr represents a string or numeric
expression. A maximum of 100 variables may appear on the left side of the assignment
statement. For example:

A, B, C = 12
All three variables. A, B and C, are assigned the value of 12.

Calculating subscript values
If an array element is referenced as a variable in a multiple assignment statement,
BASIC/VM calculates the subscript value before assigning values to the rest of the variables
listed. For instance:

1 = 5
I, A(I) = 10

The second assignment statement calculates A(I) to be equal to A(5), using the value for I
from the previous assignment statement. The value of 10 is then assigned to A(5). Notice that
the array-subscript calculation is performed first; the scalar variable I is then set equal to 10.
Final result:

I = 10
A(5) = 10

For more information on arrays, see Section 9.

Reading data lists
The READ and DATA statements are used when all data values are known in advance and
can be included directly in the program text. READ and DATA must always be used
together. The READ statement lists numeric or string variables, separated by commas. The
DATA statement contains values which correspond to the type (numeric or string) and
number of variables listed by READ. If the items in a list exceed the length of one line, they
may be continued in subsequent READ or DATA statements.

10 data 5, 10, 15, 10
20 data 2, 7.2
30 read X, Al, A2, A3, B, C

'; A1+A2' ; A3+B+C
(A1+A2+A3+B+C)A

40 print 'partial sum =
50 print 'partial sum =
60 print 'average = ' ;
70 end
>runnh
partial sum = 25
partial sum =19.2
average = 8.84

If there are more variables in the READ statement than items in the DATA statement, an
END OF DATA AT LINEnnnn message, where nnnn is a program line number, will appear
at run-lime. For example:

10 READ X,Y,Z,V,B
20 DATA 12,67,89
30 R=X+Y+Z+B
40 PRINT R
>RUNNH
END OF DATA AT LINE 10

")

*)

"

FDR 3058 5-2 1 July 1982

DATA I/O STATEMENTS 5

'

■

r

If the DATA statement contains more elements than there are variables in the READ
statement, the extra values are ignored.

Recycling data values
The RESTORE statement enables recycling of data values within a program without the
need to re-enter them. The subsequent READ statement is directed to reuse the data
beginning with the first value in the lowest numbered DATA statement.

5 READ X
10 PRINT 'LOOP = ':X:' TIMES'
20 PRINT 'FIRST VALUES OF Y ARE: '
25 X=X-1
30 FOR A = 1 TO X
40 READ Y
50 PRINT Y
60 NEXT A
70 RESTORE
80 PRINT 'SECOND VALUES OF Y ARE:'
90 FOR A = 1 TO X

100 READ Y
110 PRINT Y
120 NEXT A
130 DATA 5, 1, 3, 5, 7
140 END

This program yields two different sets of values for Y. one for each time the variable is
passed through the loop. When run, the program produces the following output:

LOOP = 5 TIMES
FIRST VALUES OF Y ARE:
1
3
5
7
SECOND VALUES OF Y ARE:
5
1
3
5

It is also possible to RESTORE only numeric or string values, using the alternate forms of the
RESTORE statement.

RESTORE § Reuses all numeric items, and
RESTORE $ Reuses all string items, beginning with

lowest-numbered DATA statement.

Data input from terminal
The INPUT statement accepts data values from the user terminal. Multiple variables both
numeric and string, can be specified on one INPUT statement line. Values for each variable
are then entered from the terminal at run-time. This feature allows data values to be varied
each time the program is run, providing increased program flexibility. The default prompt
is the exclamation point (!), which indicates that the program is awaiting terminal input.

10 REM AVERAGE ANY 3 NUMBERS
20 PRINT 'GIVE ME 3 NUMBERS'

1 J a n u a r y 1 9 8 0 5 _ 3
FDR 3058

5 DATA I/O STATEMENTS

30 INPUT A, B, C
40 X = (A+B+C)/3
50 PRINT 'THE AVERAGE IS:' :X
60 END

The program asks for three numbers. They should be separated by commas, colons or
semicolons. If these separators are omitted, the line is accepted as one entry and a second
exclamation mark is printed indicating a second value is expected. If more items are entered
than required, the extraneous ones are ignored.
Changing the default prompt: The default INPUT prompt (!) can be changed by including a
prompt string in the following formal:

INPUT ['prompt-string'.] var-l[,...var-n]
Here is an example:

INPUT 'INPUT YOUR FAVORITE COLOR': C$

Alternatively, a PRINT statement may be used to print a prompt prior to the INPUT
statement, as in the first example above.
Special characters in input: If commas are to be included as part of your input, use the
INPUTLINE statement which accepts an entire line, including commas, colons, and
semicolons as one entry. For example:

5 INPUTLINE 'WHAT IS YOUR FULL NAME:1, A$
10 INPUTLINE 'WHAT IS YOUR OCCUPATION:', B$
15 PRINT
20 PRINT 'NAME', 'OCCUPATION'
25 PRINT
30 PRINT A$, B$
40 PRINT
45 PRINT 'THANK YOU'
50 END

Leading and trailing blanks may be included in string input by using single- or double-quote
delimiters:

>1NPUT 'INPUT YOUR FAVORITE COLOR': C$
INPUT YOUR FAVORITE COLOR' SALMON '
>PRINT C$

SALMON

The entry for C$ will be printed out exactly as entered, except for the quote delimiters
which are discarded.

Timed terminal input
The ENTER statement serves the same purpose as INPUT but allows the user to specify a
time limit on response requested from the terminal, as well as a variable to indicate the
actual time used. The ENTER statement has no prompt; therefore it is helpful to include a
prompt of some sort prior to the ENTER statement itself.The format of the ENTER statement
is:

rMTrD .. ,. ■. .. . , , |numeric-variableENTER time-limit, time-hmit-vanable, {
I string-variable

F D R 3 0 5 8 5 - 4 1 J a n u a r y 1 9 8 0

DATA I/O STATEMENTS 5

~

*

r

where the numeric expression time-limit is expressed in seconds, time-limit-variable repre
sents the actual time the user needed to respond, and the numeric-variable orstring-variable is
the variable for which a value is to be assigned from the terminal.
In the following example, a value for Z is expected from the terminal and a limit of 5 seconds is
placed on response time. T represents the time-limit-variable.

10 PRINT 'Enter a value for V
20 ENTER 5,T,Z
30 PRINT T
40 PRINT Z
>RUNNH
Enter a value for Z
22
3
22
STOP AT LINE 40

The example shows that an input value of 22 was assigned to Z. and that the value was input
in 3 seconds (T). If the time limit had been exceeded, the variable Z would have been set
equal to zero and T would have been reported as -5.
Another form of ENTER, ENTER §. gets the user's login number (assigned at LOGIN time
and places it in a user-specified variable. The format is:

i t m t c d „ » • i . . . i . . | n u m - v a r 1li\ ifcK § user-num-var,time-limit,time-hmit-var, .
(str-var J

where user-num-var is the numeric variable which represents the user number. Other,
options are the same as for ENTER (above).

>ENTER # U
>PRINT U
28

The user's login number is 28 and is returned by printing the value of U. If a user-number-
variable is not specified with ENTER §, an error will be displayed.
The following short program uses all of the options of the ENTER # statement:

10 ENTER # T,5,H,P
20 PRLMT 'YOUR USER NUMBER IS:':T
30 PRINT 'P=':P
40 PRINT 'YOUR RESPONSE TIME IN SECONDS WAS:':H
50 STOP
>RUNNH
112
YOUR USER NUMBER IS: 28
P=12
YOUR RESPONSE TIME IN SECONDS WAS: 2
STOP AT LINE 50

DATA OUTPUT STATEMENTS
The results of data manipulations performed within a program are not displayed at the
terminal unless some form of the PRINT statement is included in the program. The
remainder of this section describes various methods of printing and formatting data using
the PRINT statement and the formatting modifiers. LIN. SPA, TAB, and MARGIN.

1 J u l y 1 9 8 2 5 _ 5 FDR 3058

5 DATA I/O STATEMENTS

Default printing
Without the use of formatting modifiers, the PRINT statement can accomplish the following
simple formatting tasks:

• Inserting blank lines in the output
• Separating data into columns (using commas)
• Spacing data items on a line (using colons or semicolons)
• Conditionally printing a line (using WHILE, UNTIL, etc.)

The following program demonstrates the simple formatting of string and numeric values in
two columns by using commas:

10 PRINT 'MATH CALCULATIONS'
20 PRINT
30 PRINT 'ADD', 'MULTIPLY'
40 A=3
50 B=7
60 PRINT
70 PRINT A+B, A*B
80 END
>RUNNH
MATH CALCULATIONS

A D D M U L T I P L Y

1 0 2 1

The PRINT statements on lines 20 and 60 each cause a single blank line in the output.
Enclosing a string in single or double quotes in a PRINT statement causes the string lo be
printed verbatim. Separating items by commas causes each item to be printed in a separate
column.
Column separators: The output from the PRINT statement is normally divided into zones or
columns of 21 characters each. The first zone starts in column 1. the second in column 22, and
so forth. For the average printing page, the maximum number of zones is five.
A comma in a print list causes the terminal to advance to the first character position of the
next available zone. If line overflow occurs, the current line is printed and a new line is
started. If the last element of the print list is a comma, the partial line, if any. is printed and
the cursor is positioned to the start of the next available zone.
This program illustrates the use of commas to force data into columns:

10 PRINT 'COL.l', 'COL.22', 'COL.43'
20 PRINT
30 A$ = 'NAME'
40 B$ = 'ADDRESS'
50 C$ = 'PHONE NO.'
60 PRINT A$, B$, C$
65 END

When run, the following output results:

C O L . l C O L . 2 2

N A M E A D D R E S S

F D R 3 0 5 8 5 - 6

COL.43

PHONE NO.

1 January 1980

DATA I/O STATEMENTS 5

r

r

r

Spacing items: Using a colon (:) in a PRINT statement causes output items to be separated
by a single space. Using a semicolon (:) causes no characters to be placed between output
items. The following example shows how a phrase can be output in at least three different
ways by using commas, semicolons and colons in PRINT statements. For example:

10 A$='COTTON'
20 B$='CANDY'
30 C$='IS'
40 D$='STICKY'
50 PRINT A$,B$,C$,D$
55 PRINT
60 PRINT A$;B$;C$;D$
70 PRINT
80 PRINT A$:B$:C$:D$
85 PRINT
90 END

>RUNNH
C O T T O N C A N D Y I S S T I C K Y

COTTONCANDYISSTICKY
COTTON CANDY IS STICKY

Using PRINT modifiers
In addition to the delimiters discussed above, the PRINT statement also takes three optional
modifiers. They format output by forcing items to indicated tab positions, by inserting any
number of spaces between items, and by inserting any number of blank lines between lines
of output.

TAB modifier: A specific tab position may be indicated by the TAB modifier followed by a
numeric expression in parentheses representing the column number. (Negative arguments are
treated as 0.) For example:

10 PRINT'COL.1';TAB(40);'COL.40'
20 PRINT
30 X=3~2
40 Y=X*50
50 PRINT X;TAB(40);Y
60 END
>RUNNH
C O L . l C O L . 4 0
9 4 5 0

SPA modifier: A specific: number of spaces may be forced between items in the output by the
SPA modifier followed by a numeric, expression in parentheses representing the number of
blank character positions. (Negative arguments are treated as 0.) For example:

10 PRINT SPA(5): 'COL.5"
20 PRINT
30 X=5
40 Y=X*5
50 PRINT X;SPA(5);Y
60 END
>RUNNH

COL. 5

5 2 5

19.0

19.0

i July 1982 5-7 FDR 3058

5 DATA I/O STATEMENTS

LIN modifier: A specific number of blank lines may be forced between items in one PRINT
19.01 statement using the LIN modifier followed by a numeric expression in parentheses. This elimi

nates the need for consecutive PRINT statements. For example:

10 PRINr 'COL.l'
20 PRINT
30 X=3~2
40 Y=X~2
50 PRINT X;LIN(3);Y
55 END
>RUNNH
COL.l

81
Note

LIN(3) outputs three Carriage Return—Line Feed combina
tions. LlN(-3) outputs three Line Feeds without Carriage
Returns. LIN(O) outputs a carriage return without a Line
Feed.

Formatting with PRINT USING
Additional formatting capabilities arc provided by the PRINT USING statement. Both
numeric and siring data output can be formatted according to a field of special format
characters, called a format string. This format string is included on the PRINT USING
statement line prior to the list of items to be printed. The field may contain numeric or siring
format characters, depending on the type of data lo be formatted.
There are seven special characters which define numeric format:

Table 14-2 in Section 1-4 lists each character along with an example of its use.
The jt- sign: One or more pound signs (#) in a format string represent digit positions which are
filled with the data provided in the statement.

PRINT USING '##', 25

Results in the output: 25
Including too few pound signs for a non-decimal datum causes a row of asterisks to be
printed instead of the item. This indicates that the item to be formatted was too large for the
specified field. For example:

>PRINT USING '####', 123456
* * * *

The period (.):Tho period character represents the position at which a decimal point should
occur in the datum to be printed:

PRINT USING '##.##', 20

Results in the output: 20.00

(Digit positions to the right of the decimal point will be filled with zeroes.)

" >

1

FDR 3058 r ^ _ Q 1 J u l y 1 9 8 2

DATA I/O STATEMENTS 5

Note
If too few digit places are specified in the format for a
decimal number, the item will be rounded off as follows:

40.32,") = 40.32
40.337 =- 40.33
40.323 = 40.32

The comma (,): The comma character represents a comma in the corresponding position of
the output unless all digits prior to the comma are zero. In that case, a space is printed in the
corresponding comma position.

PRINT USING '#,###.##', 2000

Results in the output: 2,000.00

PRINT USING '+#,###.##', 030.6

Results in the output: + 30.6

The up arrow ("): The up arrow indicates exponentiation. Each " represents a character in
the exponent field. Four up arrows indicate an exponent field which will be output as E±nn,
where nn is a two-digit number whose value depends on how many places the decimal is
moved in the mantissa.

PRINT USING '#### ', 17.35

Results in the output: 1735E-02

Plus and minus signs (+ -): They are used to indicate the sign of an item to be printed. A
single plus sign placed in either the first or last character position of the format causes either
a + or - sign to be printed in front of the item, depending on whether it is positive or
negative.

PRINT USING '+##.##', 25

Results in the output: +25.00

PRINT USING '+##.##', -12.3

Results in the output: -12.30

One or more plus signs in a format cause the appropriate sign to be output immediately to
the left of the most significant nonzero digit of the datum. The second through last plus signs
may be used as digit positions as required by the size of the item.

PRINT USING '++##.##', 10.40

Results in the output: +10.40

PRINT USING '++++.##', 15.90

Results in the output: +15.90
One or more minus signs in a format have similar effect on data output. However, a positive
datum will be preceded by a blank instead of a + sign.

1 J a n u a r y 1 9 8 0 5 _ 9 F D R 3 0 5 8

5 DATA I/O STATEMENTS

PRINT USING '-##.##', 20.0

Results in the output: 20.00

PRINT USING '-#,###', "705

Results in the output: - 705
Dollar sign($): One or more dollar signs in a format string cause a dollar sign lo be placed
at the appropriate position in the printed item. This position will depend on other format
characters included in the format string. For example:

>PRINT USING '$###,###.##', 4600
$ 4,600.00
>PRINT USING '-$##.##', 40.325
$40.32

>PRINT USING '$##.##', 40.325
$40.32
>PRINT USING '-$$,###.##', -70
- $070.00
>PRINT USING '+$$###.##', 70
+ $070.00
>PRINT USING '+$###.##', 70
+$ 70.00
>

String fields: There are three special characters for defining string fields:
> <

Table 14-3 in the Reference Section lists all string format characters and examples of using
each one. The examples below illustrate the effects various combinations of these format
characters have on string output.
The pound sign (;/): Each § sign in a format string represents one alphanumeric character to
appear in the output. Including too few § signs causes only the specified number of
characters to be printed.

>PRINT USING '##', 'UGANDA'
UG

Left angle-bracket (<): The primary function of the left angle-bracket is to left-justify text in a
character string. In a string, a left bracket by itself causes the leftmost character to be printed:

>print using '<', 'UGANDA*
U

Other format characters in the format string dictate how many other characters will be printed,
as well as the field positions they will occupy:

>print using '<##', 'UGANDA'
UGA

~)

1

FDR3058 5-10 1 July 1982

DATA I/O STATEMENTS 5

'

r
r

Right angle-bracket (>): The primary function of the right angle-bracket is to right-justify text
in a character string. In a string, the right angle-bracket by itself causes the rightmost character
to be printed in the first character position in the print zone:

>print using •>', 'UGANDA'
A

Depending on the other format string characters, the item may begin printing in the first charac
ter position of the print zone, or forced to other print positions as shown below:

>print using •>##########•, -YES'
YES

Placing more than one left or right angle-bracket in a format string is not useful. All of theformat
characters following the second bracket are ignored:

>print using '<##<###', 'UGANDA'
UGA

A bracket that falls anywhere but the first character position is not useful. Everything is pro
cessed up to the bracket, and everything to the right of the bracket is ignored:

>print using '###>###', 'UGANDA'
UGA

The following program demonstrates several uses of the PRINT USING statement. User
input is in rust-colored type for clarity.

10 REM EXAMPLE TO ILLUSTRATE PRINT USING
20 !
30 INPUT A,B,C
40 E$= 'STRING*
50 PRINT USING '<####################', E$
60 PRINT USING '>####################', E$
70 PRINT
80 F$='-##.##'
90 PRINT USING F$,A,B,C
100 PRINT USING '$$#####.##',A,B,C
110 PRINT USING '>########## EXPRESSION', E$
120 REM NOTE RESULT PLACED IN SPECIFIED FIELD
125 PRINT
130 INPUT X
135 PRINT USING '-##.##',SQR(X)
>RUNNH
112,13,14
STRING

12.00
13.00
14.00
$00012.00
$00013.00

STRING

1 July 1982 5-11 FDR 3058

5 DATA I/O STATEMENTS

$00014.00
STRING EXPRESSION

>46
6.78

STOP AT LINE 135

If a value for A.B or C is too large to fit in the specified field, a row of asterisks appears
instead of the desired item, as shown below:

>RUNNH
11200. 45,7
STRING

STRING

* * * * * *
45.00
7.00

$01200.00
$00045.00
$00007.00

STRING EXPRESSION

I14S6
38.16

STOP AT LINE 135

Changing output line length
By using the MARGIN statement, the length of the output line can be altered. Unless a MARGIN
statement is included in the program, the output line is assumed to be 80 characters. The choice

19.0 | of line length depends on the terminal and can beany number of characters from 1 to 1000.

A BASIC/VM program can have any number of MARGIN statements. The specifications set
up by the first MARGIN statement will remain in effect until a subsequent MARGIN
statement or a MARGIN OFF statement is encountered. MARGIN OFF turns off all margin
checking, leaving a margin of infinite length.
The following program sets the output line length to 45 characters:

10 REM OUTPUT A MATRIX USING MAT PRINT
20 MARGIN 45
30 DIM M(2,6)
40 MAT READ M
50 MAT PRINT M
60 DATA 1,2,3,4,5,6,7,8,9,10,11,12

The following results are obtained when the program is run:

1 2 3
4 5 6
7 8 9
1 0 1 1 1 2

FDR 3058 5 _ 1 2 J f u l y t 9 8 2

DATA I/O STATEMENTS 5

r

r
r

This program sets the output line to 40 characters:

10 REM OUTPUT A MATRIX USING MAT PRINT
20 MARGIN 40
30 DIM M(2,6)
40 MAT READ M
50 MAT PRINT M
60 DATA 1,2,3,4,5,6,7,8,9,10,11,12

The output looks like this:

r
i i

10
12

1 January 1980 5-13 FDR 3058

Programcontrol statements ~\

INTRODUCTION
Program control statements establish the order in which program statements are to be
executed. Without such control indicators, program execution proceeds in ascending line
number order. Specifically, control statements direct branching within a program, set up
loops for repeated operations, transfer control to external programs, and tell a program
w h e n t o s t o p . K °

Types of control statements
Control statements can be divided into two categories. If a statement directs control entirely
within a program, it is termed an internal control statement: if it transfers execution control
outside of a program to another program, it is an external control statement.
Types of internal control statements: There are three types of internal control statements:
conditional, unconditional and loops. Conditional statements transfer program on the basis
of a specified condition. This condition evaluates either to TRUE or FALSE. If a condition is
true, one set of statements is executed; if false, an alternate path is taken. Unconditional
statements affect execution control independently of any established conditions. Loop
statements cause a program to loop or repeat a section of code until a specified condition is
attained.
This section reflects the category division described above. The first part deals with control
statements that direct the flow of execution entirely within a program; the last part of this
section briefly discusses the control statements which surrender execution flow to external
programs or command files.

UNCONDITIONAL CONTROL STATEMENTS
Control statements which unconditionally direct internal program flow are- GOSUB GOTO
STOP and END.

Transfer to another statement
An unconditional GOTO transfers execution control directly to a specified statement line
regardless of the value of any condition. The transfer may be either forward or backward.
For example:

10 INPUT A
20 GOTO 56
30 A = SQR(A+14)
50 PRINT A, A* A

In this program segment, execution control is unconditionally transferred to line 50 from line

Transfer to internal subroutine
Like GOTO, the GOSUB statement transfers control directly to a statement line number.
This line is generally the beginning of a multi-line subroutine which must always end with
a RETURN statement. The RETURN statement transfers program control back to the
statement following the statement GOSUB, and program execution continues sequentially.

10 INPUT A
15 IF A<=0 GOTO 90
20 GOSUB 60
25 PRINT 'BACK TO LINE 25'
30 IF A<=10 GOTO 10

1 J a n u a r y 1 9 8 0 6 _ 1 FDR 3058

6 PROGRAM CONTROL STATEMENTS

" >

40 PRINT 'THE FINAL VALUE OF A IS:':A
50 GOTO 90
60 PRINT 'BEGINNING OF SUBROUTINE'
65 B=25
70 A=(A*A) + (A*B)
80 RETURN
90 STOP
>RUNNH
!2
BEGINNING OF SUBROUTINE
BACK TO LINE 25
THE FINAL VALUE OF A IS: 54
STOP AT LINE 90
XRUNNH
! - l
STOP AT LINE 90

The GOSUB statement in line 20 transfers control to the subroutine which begins at line 60.
Line 80 returns control to line 25. Execution then continues sequentially until line 50, when
control shifts to line 90 and the program STOPs.

Terminating program execution
The STOP and END statements terminate program execution. They do not cause branching
or control transfer as such: they simply tell the program when to stop running. STOP prints ^^
out the message: STOP AT LINE x, where x is the appropriate line number in the program
containing the STOP statement.

10 A=A+1
20 PRINT A
30 STOP
40 GOTO 10
>RUNNH
1
STOP AT LINE 30

The END statement acts like a STOP but prints no message. It is good programming practice
to include one or the other of these statements in every program. This makes it easier to
distinguish programmed execution halts from unscheduled ones.

10 A=A+1
20 PRINT A
30 END
>RUNNH
1

CONDITIONAL CONTROL STATEMENTS
Conditional statements generally operate in pairs or groups: the first statement in the pair
sets a condition and the second statement provides an executable alternative depending on
the value of this condition. The IF statement, for example, is used in conjunction with other ^
statements such as GOTO, THEN, ELSE, and DO to establish conditional branches for
program control to follow. The FOR statement is used with the NEXT statement to set up
execution loops, or with other executable statements to establish execution conditions.

c o 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 ° ^

PROGRAM CONTROL STATEMENTS 6

r

r

A condition is either true or false. If false, it has a value of 0; if true, it has a value not equal
to 0. bee Section 11 for details on logical expression evaluation.

Single condition loops
The FOR and NEXT statements together create a loop, or a series of statements thai are
executed repeatedly until a stated condition is met. The FOR statement begins the loop by
initializing a variable, called an index, then setting a limit on its value. This forms the
condition on which loop execution depends. The NEXT statement ends the loop and directs
the program back to the FOR statement at which point the variable is incremented by one
(unless otherwise specified). The FOR-NEXT loop continues until the value of the variable
has reached the set limit. The format is:

FOR index=start TO end (STEP incr]

NEXT
index is a numeric variable representing the loop index. It is initialized to start.. a numeric
expression; the loop is executed until the end value for the index is reached, incr. a numeric I
expression, represents the increment value; the default is 1. For example: |19.0

10 PRINr 'X', 'X*2', 'X~2'
15 PRINT
20 FOR X=l TO 5
30 PRINT X, X*2, X~2
40 NEXT X
50 END
>RUNNH
X X * 2 X ~ 2

1 2 1
2 4 4
3 6 9
4 8 1 6
5 1 0 2 5

This program initializes the value of X to I in line 20. PRINTs the value, its double, and its
square, returns control to line 20 and increments the value of X to 2. The loop continues until
the value of X equals 5. When this happens, the program skips the "NEXT X'- statement in
line 40 and stops at line 50.
The default increment value for single condition FOR-loops is 1. To change this value, use
STEP, followed by the desired increment value. For example. X can be incremented by 5
each time the "NEXT X" statement is executed:

10 PRIOT 'X' , 'X*2\ 'X~2'
15 PRINT
20 FOR X=l TO 20 STEP 5
30 PRINT X, X*2, X~2
40 NEXT X
50 END
>RUNNH
X X * 2 X ~ 2

1 J u l y 1 9 8 2 g _ 3
FDR 3058

6 PROGRAM CONTROL STATEMENTS

I 2 1
6 1 2 3 6
I I 2 2 1 2 1
1 6 3 2 2 5 6

In this case the value of X is initialized to 1, incremented to 6 after the first pass through the
loop, and is incremented by 5 with each successive pass through the loop until X attains the
value of 20.

Nesting loops
One or more loops mav be placed within another, or "nested-, in a program. Nesting must
be done so that the inner loop terminates before the outer loop which contains it terminates.
When two or more loops are nested, the last in a series of FOR-loops to be defined must have
the first corresponding NEXT statement in the program. The first, or outermost, FOR-loop _
must have the last NEXT statement in the series. The program below shows how a series of
loops should be nested:

5 J , I ,K=0 Uni t ia l ize index var iab les
10 FOR J=l TO 2
20 FOR I =1 TO 3 STEP 1
30 FOR K=l TO 4
40 PR INT (J+K) / I
50 NEXT K
60 NEXT I
70 NEXT J
80 END

In contrast, the program below shows improper FOR-loop nesting:

5 REM THIS IS AN IMPROPERLY NESTED FOR-LOOP
10 DIM A(2,2)
20 FOR 1=1 TO 2
30 FOR J=l TO 2
4 0 A (I , J) = I * J ^ ^
45 PRINT A(I,J)
50 NEXT I
55 NEXT J
60 STOP

When the RUN command is issued, the following occurs:

>RUNNH
50 NEXT I

NO MATCHING FOR

A program will never execute when loops are nested improperly.

Single condition branching: IF structures
There are three general formats of the IF-THEN statement pair: they direct control lo a
single statement, or to a series of statements (called a "subroutine-), or to an alternate
statement or subroutine depending on the value of a single conditional expression, that is,
w h e t h e r t h e c o n d i t i o n i s t r u e o r f a l s e . ^ ^

c 4 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 u

PROGRAM CONTROL STATEMENTS 6

r

r

Branching to a single statement: The IF-THEN statement pair is frequently used to establish
simple conditions for program control transfer. For example:

10 INPUT A
20 B=12
30 IF A<=B THEN PRINT 'A IS NOr GREATER THAN B'
40 IF A>B THEN 60
50 GOTO 80
60 PRINT 'THE VALUE OF A IS': A
65 A=A+1
70 IF A<5 THEN GOTO 10
80 END

The IF-THEN statement in line 30 compares the value of A to that of B. If A is less than or
equal to B (which is 12), the string is printed. If A is greather than B. "THEN PRINT" is
ignored. Execution then resumes with line 40. If A is greater than B, control jumps to line 60;
if the condition is false, that is, if A is less than or equal to B, the GOTO in line 50 is executed,
transferring control to the end of the program. If control shifts to line 60 as a result of a
"true" condition in line 40, the next three lines are executed. Line 70 states yet another
control condition. This time, if A is less than 5, control returns to line 10. If the condition is
false, that is, if A is greater than or equal to 5, line 80 is executed and the program
terminates.
Note that IF-THEN and IF-THEN GOTO are equivalent in function because the "GOTO" is
assumed in the IF-THEN construct. Were the construct expressed as 'TF-GOTO", the
compiler would consider the omission of "THEN" to be a "fixable error".
Branching to a subroutine: Conditions can be placed on GOSUB statements by combining
them with the IF-THEN statement pair. The "THEN" part of the pair is not mandatory in this
construct.

10 INPUT A
15 IF A<=0 GOTO 90
20 GOSUB 60
25 PRINT 'RETURN PUTS US BACK HERE AT LINE 25'
30 IF A<=10 GOTO 10
40 PRINT 'THE FINAL VALUE OF A IS:':A
50 GOTO 90
60 PRINT 'BEGINNING OF SUBROUTINE'
65 B=25
70 A=(A*A) +(A*B)
80 RETURN
90 STOP
>RUNNH
1.12
BEGINNING OF SUBROUTINE
RETURN PUTS US BACK HERE AT LINE 25
THE FINAL VALUE OF A IS: 444
STOP AT LINE 90
>RUNNH
10
STOP AT LINE 90

If the condition in line 15 evaluates to true, program control is transferred to the STOP
statement in line 90. If false, the GOSUB statement in line 20 is activated. Control shifts to
line 60, the beginning of a four-line subroutine that ends with line 80. The RETURN

1 J a n u a r y 1 9 8 0 6 - 5 FDR 3058

B PROGRAM CONTROL STATEMENTS

statement then transfers program control to line 25, and execution resumes as directed.
Branching to alternate paths: Another form of the IF statement sets up two alternate paths
for the program to follow depending on whether the indicated logical expression (condition)
is true or false:

__ (THEN stmt \ . „ I stmt-2 1IF expr GQT0 Hn.num) ELSE | Un_num j

expr is a logical expression which is evaluated to true or false; stmt is a legal BASIC
statement and lin-num is a line number of a statement in the program. For example:

IF I<0 THEN PRINT 'I NEGATIVE' ELSE PRINT 'I IS NOT NEGATIVE'

If the value of I is less than zero, the first PRINT statement is activated; if it is greater than
or equal to zero, the second PRINT is executed.
This construct enables you to transfer program control or to execute some statement on the
basis of a stated condition:

10 A =RND(X)
20 IF A<.50 THEN 40 ELSE PRINT 'A IS GREATER THAN .50'
30 IF A>.70 GOTO 45
35 X=X+1
36 GOTO 10
40 PRINT 'LINE 40: A IS:':A
42 GOTO 50
45 PRINT 'A IS:':A
50 END
>RUNNH
LINE 40: A IS: .2112731933594
>RUNNH
A IS GREATER THAN .50
A IS: .8529052734375

The first time the program is run, the "THEN 40" part of the IF statement is executed. The
second RUN shows that the "ELSE" clause is executed. (The RND function in line 10
generates random numbers: see Section 10 for details.)
Branching to DO-DOEND blocks: The IF-THEN statement pair can be combined with the
DO-fELSE DO]-DOEND block to set up a multi-branched conditional structure:

IF log-expr THEN DO

DOEND
ELSE DO

DOEND
If the logical expression, log-expr, evaluates to true, the statements in the DO...DOEND
block are executed. If the expression evaluates to false, the statements in the ELSE
DO...DOEND block are executed. If no ELSE DO clause exists, the next sequential statement
is executed whether or not the DO...DOEND block has been executed. The following
program segment illustrates the use of DO-DOEND:

~)

.1

FDR 3058 6 - 6 1 J a n u a r y 1 9 8 0

PROGRAM CONTROL STATEMENTS 6

r

•

r

200 IF A$ = 'REENTER* THEN DO
210 M (I,J) = 6
220 J = J-l
230 DOEND
240 ELSE DO
250 M (I,J) = K
260 J = J+l
270 PRINT J
280 DOEND

The IF statement in line 200 first sets up a condition specifying a string value for AS. If thai
condition is true, the program is instructed lo THEN DO the subsequent statements until a
DOEND is encountered. If the value of AS does nol equal the specified string, the program
is instructed to ELSE DO the subsequent statements until a DOEND is again encountered.
Either a THEN DO or ELSE DO statement is always used in conjunction with a DOEND
statement.

Multiple condition branching
The ON-GOTO and ON-GOSUB statement pairs set up one or more conditions for control
transfer by means of an arithmetic expression. Conditions are set up by arithmetic
expressions which evaluate to integer values. Control is transferred to one of'a list of line
numbers when one of the indicated conditions occurs.
Branching to a statement: ON-GOTO sets up a series of line numbers to which control will
be transferred depending on which condition is true.

ON expr GOTO lin-num-1 [,lin-num-2 - lin-num-n| [ELSE GOTO lin-num]
expr is an arithmetic expression which is evaluated and truncated to an integer. If the result
is 1. control transfers to the first line number listed. If the result is 2. control transfers to lin-
num-2 . and so forth.
However, if the conditional expression is out of range, control will be transferred lo the line
number indicated by the ELSE GOTO line number. For example:

ON I GOTO 100, 200, 450 ELSE GOTO 500

I is evaluated and truncated to yield an integer less than or equal to the number of statement
lines listed with GOTO (that is. 3). If I evaluates to 2. control shifts to line 200. If the value of I
is greater than 3, control transfers to line 500. If the "ELSE GOTO" clause is omitted
an ON GOTO-GOSUB OVERRANGE error message would occur.
The ON-GOTO combination essentially operates like several IF statements. For example if
500 is the last statement line in the program, the previous ON-GOTO statement could be
replaced by this series of IF statements:

40 IF I < 1 GOTO 500
50 IF I > 3 GOTO 500
60 IF I = 1 GOTO 100
70 IF I - 2 GOTO 200
80 IF I = 3 GOTO 450

500 END

1 J u l y 1 9 8 2 a 7° ' F D R 3 0 5 8

6 PROGRAM CONTROL STATEMENTS

19.0

19.0

Lines 40 and 50 are included to prevent an out-of-range error should the value of I be
anything but 1,2 or 3.
Branching to a subroutine: Similar to ON-GOTO, the ON-GOSUB construct transfers control to
one of a series of subroutines. The subroutine chosen depends on the value of the conditional
expression.

f GOTO I
ON expr GOSUB lin-1 f,lin-2,...lin-n] [ELSE < GQSUB ? ,in"nl

RETURN

expr, an arithmetic expression, is evaluated and truncated to an integer. Control transfer works
exactly as in the ON-GOTO statement. If expr is 1, control shifts to Iin-1, the first line of an
internal subroutine. If expr is 2, control goes to lin-2, etc. If the conditional expression is out of
range, the ELSE GOTO or ELSE GOSUB clause takes over. Control then shifts to the line number
indicated by the ELSE GOTO or ELSE GOSUB clause. When a RETURN statement is encoun
tered in the subroutine, control returns to the statement immediately following the ON-GOSUB
statement. For every GOSUB executed in a program, exactly one RETURN must be executed.

The following example illustrates the use of the ON-GOSUB construct with the ELSE GOTO
clause option.

10 INPUT X
20 ON X GOSUB 40, 70 ELSE GOTO 100
25 PRINT 'NEW VALUE FOR X IS:': X
30 IF X<5 GOTO 10
40 PRINT 'FIRST SUBROUITNE'
50 X=X+1
60 RETURN
70 PRINT 'SECOND SUBROUTINE'
80 X=X*2

ELSE GOTO LINE'
X OOT OF RANGE'

90 RETURN
100 PRINT
110 PRINT
120 END
>RUNNH
!1
FIRST SUBROUTINE
NEW VALUE FOR X IS:
!2
SECOND SUBROUTINE
NEW VALUE FOR X IS:
13
EISE GOTO LINE
X OUT OF RANGE

When the value of 1 is entered, the first subroutine is executed, beginning at line 40: when
the value of 2 is entered, the second subroutine, beginning at line 70 is executed. When a
value other than 1 or 2 is input, the ELSE GOTO clause is executed, as shown.

FDR 3058 6-8 1 July 1982

PROGRAM CONTROL STATEMENTS 6

c

STATEMENT MODIFIERS
The statement modifiers IF, WHILE, UNTIL and UNLESS can be used with any executable
statement to establish conditions under which the statement should be executed Uncondi
tional statements can be used with statement modifiers to increase control structure
flexibility. Below is a list of modifiers and their respective effects on companion statements
ihe general format of this statement-and-modifier combination is:

statement modifier-1 condition-1 [modifier-2 condition-2]*
statement is an executable statement; condition-1 is a logical expression; * means repeat as
necessary, and modifier is one of the following:

M o d i fi e r F u n c t i o n
IF Execute the statements if condition is true.
F0R Execute a statement or statements while index value meets a

stated condition.
UNLESS Execute the statement if condition is false.
UNTIL Execute the statements repeatedly while condition is false.
WHILE Execute the statement repeatedly while condition remains true.

More than one modifier may be included in a statement line. They are processed from right
to left.

Statements with modifiers
IF: Executable statements can be made to perform their actions only IF a specific condition
is true. For example:

IF A<=B THEN PRINT 'A IS NOT GREATER THAN B*
IF A>B THEN 60

FOR: The FOR statement modifier can be used with any executable statement to establish
a range of values (for an index variable) during which the statement can be executed. For
example:

PRINT ERR$(I):I FOR I = 1 TO 30

This statement prints out the error message associated with the error code I for the values
of I indicated. (See Section 7 for more details on ERR$.)
UNTIL: An executable statement can be made to perform some action while a certain
condition remains true. When this condition becomes true, execution will terminate For
example:

10 Y=0
20 Y=Y+1
30 GOTO 50 UNTIL Y=10
40 GOTO 70
50 PRINT Y
60 GOTO 20
70 END
RUNNH
1
2
3
4

1 J a n u a r y 1 9 8 0 g _ g
FDR 3058

6 PROGRAM CONTROL STATEMENTS

5
6
7

In this program, Y is initialized to 0. The next statement (line 20) instructs the program to
increment Y by 1. Line 30 will GOTO line 50 until Y is equal to 10. When this occurs, the next
line (GOTO 70) is executed, transferring control to the last statement in the program.
UNLESS: The UNLESS modifier causes a statement to be executed while a certain condition
is false. Execution will continue until the condition becomes true. For example:

10 INPUT "VALUE FOR A':A
20 A=SQR(A)+COS(A)
30 PRINT USING '#.###', A UNLESS A<5
35 IF A>5 GOTO 50
40 PRINT 'A LESS THAN 5'
50 STOP

This program prints the value of A as long as A < =5. When A is less than 5, the UNLESS
condition becomes true and the PRINT statement at line 40 is executed.
WHILE: When the WHILE modifier is used, statement execution will continue as long as a
certain condition remains true. The example below shows the use of the WHILE modifier:

10 X=8
20 FOR 1=1 TO 5
25 D=X*2
30 PRINT X, X*2 WHILE D<10
40 X=X+1
50 NEXT I
60 STOP

The program is instructed to GOTO 50 as long as D is less than 10. The PRINT statement in
line 50 is then executed. If D is greater than 10, the program is instructed to GOTO line 70.

10 FOR 1=1 TO 5
15 X=X+1
20 D=X*2
30 GOTO 50 WHILE D<10
40 GOTO 70
50 PRINT X, X/2
60 NEXT I
70 END
>RUNNH
1 - 5
2 1
3 1 - 5
4 2

Multiple modifiers: More than one modifier can be used in a single statement. Multiple
modifiers are processed from right to left.

10 INPUT X
20 IF X>0 THEN 80 ELSE 60 UNLESS X=5

e - i n 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 °

~ >

PROGRAM CONTROL STATEMENTS 6

"

30 PRINT 'X=5'
40 PRINT 'INPUT ANOTHER VALUE FOR X:
50 GOTO 10
60 PRINT 'X IS LESS THAN 0 '
70 GOTO 90
80 PRINT 'X IS :': X
90 END
>RUNNH
I I
X IS : 1
>RUNNH
112
X IS : 12
>RUNNH
15
X=5
INPUT ANOTHER VALUE FOR X:
1-10
X IS LESS THAN 0

Conditional loops
The statement modifiers WHILE and UNTIL may be used with the FOR- NEXT statements
to place special conditions on loop execution. Instead of assigning an end value to index, (the
variable which is incremented during loop execution), the loop is executed WHILE or
UNTIL a specified condition exists.

General format for loops with modifiers
The general format for loops wilh statement modifiers is:

FOR var=start [STEP incr] J WHILE J cond-expr
I UNTIL J

NEXT
Note

In FOR-loops with statement modifiers, the step size is
assumed to be zero unless otherwise specified. Any value
may be supplied for the STEP increment, but be careful!

WHILE: The WHILE modifier causes loop execution and variable incrementation to
continue as long as the specified condition is true.

10 X = 10
20 for I = 1 step 1 while I<X
30 X = X/2
40 print I, X
50 next I
60 stop

rOneachpass through theloop.thevalueofX Is divided by2.The value ofl is incremented by laslong as it is less than the value of X. If no STEP is specified. I would be incremented bv zero or
unchanged, creating an infinite loop.

C
1 July 1982 6-11 FDR 3058

6 PROGRAM CONTROL STATEMENTS

UNTIL: The UNTIL modifier causes loop execution and variable incrementation to continue
until a specified condition is met.

100 for I = 1 step 1 until J = 10E4
110 J = 1*10
120 next I
130 end

On each pass through the loop, the value of) is set equal to I* 10.1 continues to be incremented
by 1 until the value of) is equal to 10,000.

Trapping QUIT interrupts
At PRIMOS command level, hitting BREAK or CTRL-P (see Section 2), causes an immediate
interruption of the ongoing operation, whatever it may be. The word "QUIT,'" appears at the
terminal when this interrupt occurs.
In BASIC/VM, hitting CTRL-P or BREAK also causes an unscheduled halt to the ongoing
operation. The response generated by the system depends on the nature of the operation and
on whether or not you are at command level. To avoid unnecessary confusion of terms, the
phrase "hitting CTRL-P", will be used to describe both of these operations. This should
remove any confusion between the BASIC/VM commands BREAK and QUIT, and the
PRIMOS concepts just described.
In BASICV CTRL-P's tvped during execution of a command return you to BASICV command
level with no displayed message. Only the " >" prompt is returned. This allows you to
escape from time-consuming or otherwise undesirable operations such as LIST or TYPE.
Similarly CTRL-P's can be used to terminate an executing program. For example, it may be
necessary to get out of an infinite loop or a long PRINT operation. CTRL-P's typed during
program "execution return control to BASICV command level with the message:

QUIT AT LINE lin-num
lin-num is the program line at which the program was interrupted.
However, in debugging a program, it may not be convenient to keep restarting a program
after each CTRL-P. An error handler, similar to the "ON ERROR GOTO" statement (see
Section 7), can be used to trap each CTRL-P and resume execution at a specified point in the
program.
Trapping QUITs: The ON QUIT GOTO statement can be used to redirect program control in
the event of a CTRL-P occurring during program execution. Simply include an appropriate-
line number to which control should return. If no QUIT trap is set up, program execution
will abort, and control will be surrendered to BASIC/VM command level.
It should be noted that activation of the ON QUIT GOTO handler depends on the length of
the program or process from which you are attempting to escape. Because of the time-lag
between actual program execution and terminal display, it may appear that execution is at
a particular point when, in fact, the operation has already terminated.
Using QUIT traps: The program below sets up a QUIT trap which simply sends control to
line 70 and prints the value of X at which the QUIT was effected. The actual terminal display
cannot be represented on paper, so the example below has been somewhat modified for
c arity The time-delay factor makes it look as though the CTRL-P was hit when the value of
X was 8: however, as the displayed message indicates, the QUIT actually occurred when the
value of X was 20.

10 ON QUIT GOTO 70
20 FOR X=l TO 30

R , n 1 J u l y 1 9 8 2F D R 3 0 5 8 ° l z "

PROGRAM CONTROL STATEMENTS 6r
r

r

r

r

30 PRINT X, X*2
40 NEXT X
50 PRINT 'DONE'
60 GOTO 80
70 PRINT 'FORCED QUIT WHERE X WAS:':X
80 END
>RUNNH
1 2
2 4
3 6
4 8
5 1 0
6 1 2
7 1 4
8 1 6

(CTRL-P typed here)
FORCED QUIT WHERE X WAS: 20

If CTRL-P is typed very near the end of the loop, the ON QUIT statement is not activated,
and program execution continues without interruption. The display on the screen may
appear to halt temporarily, but execution still continues and the message in line 70 is not
displayed.
Turning off QUIT traps: QUIT traps can be turned off with the QUIT ERROR OFF
statement. The above program is modified in the example below to illustrate the difference
between trapped and untrapped QUITs. After the QUIT trap has been activated, the QUIT
ERROR OFF statement in line 80 turns off the trap set in line 10. The output represented
here shows what is happening from the user's point of view.
The first time CTRL-P is hit, the trap is activated, transferring control to line 70. The QUIT
trap is then turned off, causing the next CTRL-P to abort program execution. Control then
returns to BASICV command level, with the "QUIT AT LINE 40" message display.

10 CN QUIT GOTO 70
20 FOR X= 1 TO 30
30 PRINT X, X*2
40 NEXT X
50 PRINT 'DONE'
60 GOTO 90
70 PRINT 'FORCED QUIT WHERE X WAS:': X
80 QUIT ERROR OFF
85 GOTO 20
90 END
>RUNNH
1 2
2 4
3 6
4 8
5 1 0

(CTRL-P typed here)
FORCED QUIT WHERE X WAS: 23
1 2
2 4
3 6

1 J a n u a r y 1 9 8 0 6 - 1 3 F D R 3 0 5 8

6 PROGRAM CONTROL STATEMENTS

4 8
5 10
6 12

(CTRL-P typed he re)
QUIT AT LINE: 40

CAUTION
Beware of trapping QUITs back to the same infinite loop
from which you are trying to escape. The ON QUIT GOTO
statement should not return control to a statement prior to an
infinite loop you wish to exit. Such circular traps can cause
your terminal to "hang". To get out of such a loop, you must
log yourself out from another terminal via the LOGOUT
command (PRIMOS). Simply type LOGOUT followed by
your user-number. (Your user-number is assigned at LOGIN.
See Section 2.) For example:

LOGOUT -39

QUIT-handling in functions: The same caution regarding the use of ON ERROR GOTO
(Section 7) in user-defined functions applies to the use of ON QUIT GOTO. Be careful of
making control transfers outside of the function definition. See Section 10.

BRANCHING TO EXTERNAL PROGRAMS
The COMINP and CHAIN statements direct the flow of a program to external command files
or programs. They can be used either conditionally or unconditionally, depending on the
context of the program in which they appear.

Transferring control to an external program
The CHAIN statement transfers program control from the currently executing program to an
external (non-foreground) program. When the CHAIN statement is encountered, execution
of the foreground program is halted, all currently open files are closed, all variables and
arrays are deallocated, and the specified external program is loaded into the foreground
Execution of the CHAINed program begins with the first line in the program. This external
file may be either a source or binary (compiled) file. The CHAINED program runs until an
END or any other control-transfer statement (for example, another CHAIN) is encountered.
There are two situations in which CHAIN is particularly useful:

• If a single program is too large to be loaded into memory at one time, it can
be divided into more than one program, each one being loaded in
separately with CHAIN.

• A particular program may be used by several others by including a CHAIN
statement in each of the calling programs.

Using CHAIN: The example in Figure 6-1 makes use of CHAIN to set up a simple
"appointment calendar" system. This "system" consists of three programs, all "linked", or
interrelated, by CHAIN statements. Appointment information is kept in various data files
which are created as needed by these programs.
Here is a brief look at what is happening from the program control standpoint: the file
CALENDAR is the "control" file from which the CHAIN sequence is begun. It begins by
asking you which day of the week you want to consult. The program then asks what you want
to do with the file. To simply update the information, type "UPDATE"; to display existing
information, type "DISPLAY". To do both, type "BOTH". The "CHAIN A$" statement

" >

FDR 3058 g _ 1 4 1 J a n u a r y 1 9 8 0

PROGRAM CONTROL STATEMENTS 6

automatically shifts program control to either the DISPLAY or UPDATE file so that the
appropriate action can be performed.
The UPDATE file requests the necessary information and writes it to a data file specified by
the value entered for DS. These operations make use of the file handling statements
discussed in Section 8. (You don't have to know how these work to understand CHAIN.)
After the requested information has been recorded, the program asks if you want to display
the information just recorded in the data file. If you answer "YES" to this question, another
CHAIN statement transfers control to the DISPLAY file. Otherwise, the program ends.
The DISPLAY file merely opens the desired data file and reads back the information in it.

r

■

r

r
r

UPDATE

CALENDAR

103 PRINT 'CALENDAR FILE"
110 DEFINE FILE II -'WHICH'
120 INPUT "WHICH LAV DO YOU WANT?' , DS
130 WRITE |t, DS
140 PRINT "Do you want Co UPDATE or DISPLAY?
ISO INPUT 'Enter option:', AS
160 CLOSE II
170 CHAIN AS
180 END

CHAIN AS

110 DEFINE FILE II ■ 'WHICH'
120 READ |1, DS
130 DEFINE FILE 12 = DS
170 PRINT 'ENTER YOUR SCHEDULE INFORMATION'
180 INPUT 'TIME:', AS
190 INPUT 'PARTY:', 3S
200 INPUT 'PLACE:', CS
210 WRITE 12, AS
220 WRITE 12, BS
230 WRITE 12, CS
240 INPUT 'Do you want to DISPLAY?' , XS
250 IF XS = 'YES' THEN CHAIN 'DISPLAY'
260 CLOSE 11,2
280 END

IF AS - UPDATE

F AS = DISPLAY
DISPLAY

100 DEFINE FILE II = 'WHICH'
110 READ II, DS
120 CLOSE II
130 DEFINE FILE 12 = DS
140 PRINT DS: 'CALENDAR file*
150 READ 12, AS,BS,CS
160 PRINT "YOUR SHSDULE IS:'
170 PRINT "TIME", 'PARTY', 'PLACE'
180 PRINT AS, BS, CS
190 CLOSE 12
200 END

Figure 6-1. Using CHAIN.

Control transfer to command files
The COMINP statement, followed by a quoted filename argument, stops the current
program flow, calls the specified external file called (command file), to the foreground, then

19.0

1 July 1982 6-15 FDR 3058

6 PROGRAM CONTROL STATEMENTS

reads and executes the commands in it. The command file essentially lakes the place of
input from the terminal. This is useful when a series of commands must be frequently
executed by more than one program. The series of commands and associated data can be put
in a command file and then be called with COMINP from any program as needed.
The BASIC/VM COMINP statement is much like the PRIMOS command COMINPUT (see
Appendix D). The argument following a COMINP statement must be a legal BASIC string.
COMINP may also be used as a command, and. as such, takes an unquoted string argument.
The following program, TESTRUN, uses the COMINP statement to call an external program.
TEST to the foreground. BASICV reads commands from this program until instructed by the
command COMINP TTY to resume accepting commands from the terminal. This must be the
last command in the external file. The commands COMINP PAUSE and COMINP CON
TINUE can be used to temporarily halt and then continue the process of the command file.
The command file "TEST" was created under the PRIMOS EDITOR and exists in the same
UFD as the BASICV program 'TESTRUN". Both are listed below:

TESTRUN

OK, slist testrun
10 print 'TESTRUN*
20 COMINP 'TEST'

TEST

OK, slist test
10 print 'this is a cominp file'
20 input a
30 print a
40 if a<10 goto 20
50 print 'doneI'
run
1
2
3
4
5
6
7
8
91
cominp tty

" >

18

The last command in the file "TEST" is COMINP TTY which returns program control to the
terminal. The following output results when TESTRUN is executed:

OK, basicv testrun
TESTRUN
>10 print 'this is a cominp file1
>20 input a
>30 print a

FDR3058 6-16 1 June 1981

PROGRAM CONTROL STATEMENTS 6

>40 if a<10 goto 20
>50 print 'donel'
>run
TESTRUN FRI, APR 24 1981 17:22:08

this is a cominp file
11
1
12
2
13
3
14
4
15
5
16
6
!7
7
18
8
191
91
donel
STOP AT LINE 50
OK, cominp tty
OK,

Note that the PRIMOS "OK" prompt is returned, indicating that it is ready to accept input from
the terminal.

THE FORTRAN CALL INTERFACE
With the FORTRAN call interface users can:

• Call any shared system library routine from BASIC/VM. See the Subroutines Refer
ence Guide for details on system library routines and the BASIC/VM interface.

• Call non-system library (user-written) routines loaded with BASIC/VM. In the inter
est of system security, only your System Administrator or supervisor should have
write access - or authorize write access to others - for using the files and directories
that load these routines. Appendix F and the System Administrator's Guide list a
detailed procedure for loading non-system library routines.

Note
Only FTN routines are guaranteed to be callable, but any lang
uage's routine may be called as long as the data is interpreted
correctly.

18

1 July 1982 6-17 FDR3058

6 PROGRAM CONTROL STATEMENTS

18

Declaring a Subroutine
Before any routine can be used, it must first be declared using this format:

SUB FORTRAN subr-name (arg-format [,arg-format] . . .)
The word FORTRAN is required regardless of the type of subroutine called, subr-name is the
name of any declared legal system or non-system library routine: it can be a maximum of six
characters, arg-format is any applicable FORTRAN declaration from the set: INTEGER,
INTEGERS, REAL or REAL*8. The word INTEGER may be abbreviated INT. The maximum
number of arguments allowed is 10.

Calling the Subroutine
Once a subroutine has been declared, it can be called from within a BASIC/VM program, using
this format:

CALL subr-name (arg [,argj . . .)
A maximum of 10 arguments (arg) may be used.

Data Conversion
When an external routine is declared in BASIC/VM, the system can then recognize CALL state
ments and compile the appropriate code. This code consists of a dynamic link to the system
routine and appropriate code for data conversion. These are contained in the code generated by
BASIC/VM and will run without recompilation when a BASIC/VM binary image file is
executed.
Data conversion is done automatically at call-time. The arg-formats given above are sufficient
to convert almost any kind of data a user may encounter. Scalars and arrays are converted to
their INT or REAL counterparts, if required, recalling that the BASIC/VM numeric data tvpe is
REAL*8.

Note
When an array is being passed as an argument in an external
call, the zeroth element will be included. Thus, the first element
of a returned array is A(0).

Call-by-reference setting is supported by this interface, but strings are restricted in that the
called routine may not alter a string beyond its passed length, or unpredictable errors will
result. If a string is to be returned by a called subroutine, the string variable must be pre-allo-
cated (see the TIMDAT.BASIC example, line 25).
The following table shows how each kind of data is converted.

FDR3058 6-17A 1 June 1981

PROGRAM CONTROL STATEMENTS 6

Declared data type

fO
+J

CU
w
w

INT INT* 4 REAL REAL*8

X i n t e g e r in teger *4 r e a l r ea l *8

x$

X() i n t e g e r
a r ray

in teger *4
a r ray

r e a l
a r ray

rea l *8
a r r a y

9 I)

Sample Programs
The following BASIC/VM programs show how the FORTRAN CALL feature can be used in
three different situations:

• The SAMPLE.TST program calls a user-written FORTRAN subroutine called
SAMPLE. The SAMPLE subroutine is included in the BASICV UFD on the master
disk.

• The Tl program calls a system library routine TNOU, which is written in FORTRAN.
• The TIMDAT.BASIC program calls a library routine TIMDAT which returns an array

of mixed ASCII and INTEGER items.

SAMPLE. TST MON, JUN 16 1980 14:39:20

10
20
30
40
50
60
70

THE FOLLOWING BASIC/VM PROGRAM SERVES AS A SAMPLE SESSION
TO DEMONSTRATE FTN CALL FUNCTIONALITY.

THE SECOND LINE IS OUTPUT BY THE FORTRAN SUBROUTINE 'SAMPLE1
AND 'SAMPLE1 REQUIRES AN ARGUMENT OF TYPE INTEGER*2. IT RETURNS
AN ARGUMENT TWICE ITS ORIGINAL VALUE.

INT]

•;A

80 SUB FORTRAN SAMPLE
90 A = 12345
100 PRINT 'VALUE OF ARGUMENT TO BE PASSED
110 CALL SAMPLE (A)
120 PRINT 'VALUE OF ARGUMENT RETURNED : ';A
130 END
>RUN
SAMPLE.TST MON, JUN 16 1980 14:39:26

VALUE OF ARGUMENT TO BE PASSED : 12345
VALUE OF ARGUMENT PASSED : 12345.00000
VALUE OF ARGUMENT RETURNED : 24690

18

' luly W82 6-17B FDR3058

6 PROGRAM CONTROL STATEMENTS

18

T l MON, JUN 16 1980 14:39:40

1
I SAMPLE FTN CALL PROGRAM
I
I NOTE IHAT 'TNCU' IS A LIBRARY ROUTINE THAT PRINTS A STRING ARGUMENT
1 AT USER TERMINAL.

10 SUB FORTRAN TNOU (INT, INT)
20 A(I) = CODE (SUB (' ABCDE', I)) FOR I = 1 TO 5
2 5 F O R 1 = 1 T O 5
3 0 C A L L T N C U (A (I) , 2)
3 5 N E X T I
40 END
>RJN
T l M O N , J U N 1 6 1 9 8 0 1 4 : 3 9 : 4 4

A
B
C
D
E

FDR3058 6-17C 1 June 1981

PROGRAM CONTROL STATEMENTS 6

TIMDAT.BASIC MON, JUN 16 1980 14:40:02

The following program calls library routine TIMDAT which
returns an array of mixed ASCII and INTEGER format elements.
In the program, notice that TIMDAT is being called twice.
Once with array A as the return argument and the other time
with string A$ as the return argument.
Note that (1) Values returned start at A(0).

(2) Storage space MUST be allocated for A$
before the call.

10 SUB FORTRAN TIMDAT(INT,INT)1 Declare FORTRAN subroutine TIMDAT
15 DIM A(15)
20 CALL TIMDAT(A(),15) ! call TIMDAT using array A as return argument
25 A$=SPA(30) ! storage space must be allocated
3 0 ! f o r A $ b e f o r e t h e c a l l .
35 1
40 CALL TIMDAT(A$,15) 1 call TIMDAT using string A$
45 1
50 ! Note that the first three and last returned array elements are
55 ! in ASCII format. Hence no conversion is necessary when used
60 ! as strings. The other returned array elements are returned as
65 ! integers. Hence best retrieved through array A which is numeric.
70 !
75 PRINT 'MONTH :*:LEFT(A$,2) 1 first returned array element
80 PRINT 'DAY :':MID(A$,3,2) 1 second returned array element
85 PRINT 'YEAR :':MID(A$,5,2) 1 third returned array element
90 PRINT 'TIME IN MINUTES SINCE MIDNIGHT : ' :A(3) 1 fourth
95 PRINT 'TIME IN SECONDS :':A(4) ! fifth
100 PRINT 'TIME IN TICKS :':A(5) ! sixth
105 PRINT 'LOGIN NAME :':right(A$,25) ! last returned element(3 words)
110 end
>RUN
TIMDAT.BASIC MON, JUN 16 1980 14:40:12

18

MONTH : 06
DAY : 16
YEAR : 80
TIME IN MINUTES SINCE MIDNIGHT
TIME IN SECONDS : 13
TIME IN TICKS : 319
LOGU\ NAME : MHUI

880

r
r

1 June 1981 6-17D FDR3058

Editing and debugging

INTRODUCTION
The BASIC/VM features covered in this section are designed to help you modify, improve,
test and debug your BASIC programs. This information includes:

• Editing methods—including BASlC/VM's own line-oriented ■"Editor"'
• Debugging procedures—including error traps and execution tracing
• Performance measurement package—measures overall program efficiency

Program errors
Errors in a program are basically of three types: syntax errors, which are violations of
language rules: execution errors, which occur when a program attempts an illogical or
impossible action (sometimes fatal): and logic errors, or faults in program logic, which can
produce undesirable results like program failure.
Section 3 explains how the majority of program errors can be found and corrected. This
section describes some additional editing commands as well as the debugging and per
formance measurement features which may be useful in detecting the more troublesome
program errors (bugs).

EDITING A BASIC/VM PROGRAM
In addition to the simple edit features discussed in Section 3. BASIC/VM provides the
following edit commands:

Command Funct ion
DELETE Deletes one or more statements from a pro

gram.
EXTRACT Deletes all lines except those specified.
ALTER Edits individual lines.
RESEQUENCE Renumbers statements after edit.
LENGTH Determines number of lines in a file.

Deleting specific lines
The DELETE command can be used to remove specific statement lines from a program. The
format is:

DELETE lin-num-1,...) lin-num-n [
(lin-num-i - lin-num-n)

For example, delete line 100, lines 130 through 160 (inclusive), and line 195, in a program,
type:

DELETE 100, 130-160, 195

Extracting statement lines
The EXTRACT command allows the user to delete all lines in a program except those
specified. The format is:

EXTRACT lin-num-1,... j lin-num-n [
) lin-num-i - lin-num-n \

1 J a n u a r y 1 9 8 0 7 - 1 L - D R 3 0 5 8

7 EDITING AND DEBUGGING

For example, to delete all lines in a program except 10-50 (inclusive), and line 59. type:

EXTRACT 10-50, 59
This will delete all lines in the program except those indicated.

Editing individual lines
Instead of deleting and retyping a line completely, it is possible to modify a portion of it. The
ALTER command provides a series of subcommands which enable editing within lines. The
ALTER subcommand mode is entered by typing:

ALTER line-number
where line-number is the line to be modified. ALTER subcommands are also discussed in
Section 13. Here is the complete list of subcommands:

Subcommand Function

A/string/ Append string to end of line.
Inn Move pointer backnn characters (where nn is any integer).
Ce Copy line up to but not includingc (where c is any character).
Dc Delete line up to but not includingc.
E n E r a s e n c h a r a c t e r s .
F C o p y t o e n d o f l i n e .
I/string/ Insert string at current position. (The slash (/) may be any delimiter

not used as part of the string.)
M n M o v e n c h a r a c t e r s .
N Reverse meaning of next C or D parameter (copy until character ^ c. or

delete until character 5= c).
O/string/ Overlay string on line from current position. A '!' changes a character

to a space, a space leaves character unchanged.
Q E x i t f r o m A LT E R m o d e .
R/string/ Retype line withstring from current position. (Similar to Overlay but

'!' and space have no special effects.)
S Move pointer to start of line.

Using ALTER
The following example shows how the subcommands are used. They are entered in response
to the ":'* prompt and several may be packed on a line without delimiters. ALTER returns
the colon after every (CR), allowing as many chances as you need to modify the line. Type
Q to return to BASIC/VM command level.

" >

1. > ALTER 100
100 IF X=Y GOTO 230
: C=ElI/>/F

100 IF X>Y GOTO 230

:Q

2. >ALTER 230
230 PRINT "TOO LOW
: M11E3A/HIGH'/

230 PRINT "TOO HIGH

FDR 3058 7-2 1 July 1982

EDITING AND DEBUGGING 7

r

Fixing a simple program
This example shows the process of editing, compiling, and executing a new program:

10 ! THIS PROGRAM DEMONSTRATES THE USE OF AN ACCUMULATOR
20 ! D= ACCUMULATED DEPOSITS
30 !X= DEPOSITS; N= NUMBER OF DEPOSITS
40 D=0
45 N=0

r

r
1 J u l y 1 9 8 2 7 - 2 A F D R 3 0 5 8

EDITING AND DEBUGGING 7

r
-

"

50 READ X
60 D= D+X 1 USE OF LET IS OPTIONAL
70 N=N +1 i THE ACCUMULATOR
75 PRINT "TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ '; D
80 PINT 'NUMBER OF DEPOSITS', N
90 GOTO 50
100 DATA 14.15, 234.56, 78.90, 12.00, 0
>COMPILE
80 PINT 'NUMBER OF DEPOSITS', N
INVALID WORD IN STATEMENT
>ALTER 80
80 PINT 'NUMBER OF DEPOSITS', N
:CI I /R/F
80 PRINT 'NUMBER OF DEPOSITS', N

f : Q>COMPILE
>EXECUTE
TOTAL AMOUNT OF DEPOSITS 'TO DATE IS; $ 14.15
NUMBER OF DEPOSITS 1
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 248.71
NUMBER OF DEPOSITS 2
TOTAL AMOUNT OF DEPOSITS OF DATE IS; $ 327.61
NUMBER OF DEPOSITS 3
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4
'TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 5
END OF DATA AT LINE 50

>65 IF X=0 GOTO 110
110 END
>COMPILE
>EXECUTE
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 14.15
NUMBER OF DEPOSITS 1
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 248.71
NUMBER OF DEPOSITS 2
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 327.61
NUMBER OF DEPOSITS 3
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4
>85 PRINT
>COMPILE
>EXECUTE
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 14.15
NUMBER OF DEPOSITS 1

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 248.71
NUMBER OF DEPOSITS 2

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 327.61
NUMBER OF DEPOSITS 3

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4

1 J a n u a r y 1 9 8 0 7 - 3 F D R 3 0 5 8

r

7 EDITING AND DEBUGGING

Determining the total number of statements
The LENGTH command can be used to determine the number of lines in the foreground file.
For example:

>LENGTH
25 LINES

Renumbering a program
After deleting and inserting statement lines in a program, it may be necessary to renumber
them in a logical sequence. The RESEQUENCE command renumbers a program with
default values or with supplied values. Any BASIC/VM program can be renumbered with
RESEQUENCE. The format is:

RESEQUENCE [new-start, old-start, new-incr]
where new-start is the number with which to begin renumbering; old-start is the line at
which to begin the resequence and new-incr is the new increment value with which to
continue renumbering. If no values are specified, the default values are 100, the first line of
the program, and 10, respectively.

>LISTNH
10 PRINT
30 PRINT 'X', 'X~X\ 'X*X'
50 LET X=9
60 PRINT
70 PRINT X, X~X, X*X
130 END

>RESEQUENCE 10, 10, 5
XLISTNH
10 PRINT
15 PRINT 'X', 'X~X*, 'X*X'
20 LET X=9
25 PRINT
30 PRINT X, X~X, X*X
35 END

Renumbering begins with number 10, at current program statement 10, in increments of 5.

DEBUGGING A PROGRAM
Control errors in a program are sometimes difficult to locate. The process of finding and
fixing these errors in a program is usually called "debugging". The debugging process can be
simplified through the use of the BREAK and TRACE commands, and the ON ERROR GOTO
and PAUSE statements. See also PERFORMANCE MEASUREMENT, at the end of this
section.

Debug commands
The BREAK ON command sets up halts, or breakpoints, at specific lines in a program. These
breaks return the user to BASICV command level. Values being passed within a program
can be displayed at these breakpoints. Program execution is resumed only if CONTINUED
is typed. BREAK ON is issued immediately following compilation and prior to execution.
The format is:

BREAK I ™ i lin-num-l[,...lin-num-n]i OFF [

~ >

" >

FDR 3058 7 _ 4 1 J a n u a r y 1 9 8 0

EDITING AND DEBUGGING 7

r

*

BREAK OFF, typed prior to re-execution, turns off any or all previously set breakpoints. If
no line numbers are specified with BREAK OFF, all breakpoints are eliminated.
The following program demonstrates how to use breakpoints to cheat at a computer guessing
game.

10 PRINT 'WHAT NUM3ER AM I THINKING OF'
15 N=INT(50*RND(0)+1)
20 FOR C = 0 TO 13
30 INPUT X
50 IF X<N GOTO 90
60 IF X>N GOTO 110
70 PRINT 'RIGHT, ANOTHER! '
80 GOTO 140
90 PRINT "TOO LOW'
100 GOTO 120
110 PRINT "TOO HIGH'
120 NEXT C
130 PRINT "TIME IS UP. ANOTHER'
140 INPUT A$
150 IF LEFT(A$,1)='Y' THEN 15
160 STOP
>COMPILE
>BREAK ON 50
>EXECUTE

WHAT NUMBER AM I THINKING OF
1 27
BREAK AT LINE 50
>PRINT N
41
>X=41
>CONTINUE
RIGHT, ANOTHER!
!N
STOP AT LINE 160
>8R£AK OFF 50

The program is instructed to stop at line 50. The user finds out what the number is (PRINT
N) and sets an answer (X) equal to that number, in this case, 41. Program execution is
resumed with the CONTINUE command at which point the system responds that the correct
answer has been given. When the answer "N" (for "NO") is given to the "RIGHT,
ANOTHER!" prompt, the user is returned to command level. "BREAK OFF 50" indicates
that when the program is run again, no break will occur at line 50.

Inserting program halts
The PAUSE statement acts as an executable BREAK. It is used in conjunction with
CONTINUE. When the program halts at the line number on which the PAUSE statement
appears, a message is displayed indicating the temporary halt. Type CONTINUE to resume
the program after a breakpoint. For example:

10 PRINT 1
20 PAUSE

1 J a n u a r y 1 9 8 0 7 _ 5 FDR 3058

7 EDITING AND DEBUGGING

30 PRINT 3
40 END
>RUNNH
1
PAUSE AT LINE 20
>CONTINUE
3

Tracing statement execution
The TRACE ON command should be issued immediately after compiling a program, and just
prior to executing it. The TRACE feature is useful for examining the path of program
execution, thereby expediting the debugging process.The line number of each statement
executed is displayed in brackets, for instance, [120J. For example, if a specified condition
is met, a GOTO or GOSUB statement will be executed, and its line number will be
displayed. When program execution terminates, type TRACE OFF, and the program can be
re-executed normally.

5 PRINT 'INPUT A VALUE FOR A'
10 INPUT A
20 IF A<20 THEN GOSUB 40
30 GOTO 80
40 PRINT 'A LESS THAN 20'
50 A=COS(A)
60 PRINT 'COSINE OF A =': A
70 RETURN
80 PRINT 'FINAL VALUE OF A =': A
90 END
>COMPILE
>TRACE ON
>EXECUTE
[5]
INPUT A VALUE FOR A
[10]
113
[20]
[40]
A LESS THAN 20
[50]
[60]
COSINE OF A = .9074467814502
[70]
[30]
[80]
FINAL VALUE OF A = .9074467814502
[90]
>TRACE OFF
>EXECUTE
INPUT A VALUE FOR A
!23
FINAL VALUE OF A = 23

Notice that after TRACE OFF was typed, the program executed without line number display. ^

7 c 1 J a n u a r y 1 9 8 0F D R 3 0 5 8 / _ t > '

~ >

EDITING AND DEBUGGING 7r
r

r

r

r

Setting error traps
There are several ways to set up error traps within a program. The ON ERROR GOTO
statement establishes a line number to which control will be transferred when a run-time
error occurs. For example, if invalid data is input, control can be transferred to a statementA
variation of the ON ERROR statement provides for redirection of program flow if an I/O
error occurs on a specified unit. The format is:

ON ERROR [#unit] GOTO lin-num
The #unit option is used in trapping I/O errors on a unit previously opened by a DEFINE
FILE statement. See Section 8 for details on this and other data file I/O.

Turning off error traps
The ERROR OFF statement cancels all error traps established by ON ERROR GOTO
statements. The format is:

ERROR OFF
The example below uses ERROR OFF to cancel error trapping after line 120 has been
executed.

10 ON ERROR GOTO 120
20 INPUT 'ENTER A VALUE FOR X:':X
30 ON X GOSUB 60, 90
40 PRINT 'X IS': X
50 GOTO 160
60 PRINT 'FIRST SUBROUTINE'
70 X=X+1
80 RETURN
90 PRINT 'SECOND SUBROUTINE'
100 X=X*2
110 RETURN
120 PRINT 'ERROR TRAP ACTIVATED'
130 PRINT 'NOW TURN TRAP OFF'
140 ERROR OFF
150 GOTO 20
160 END
>RUNNH
ENTER A VALUE FOR X:12
ERROR TRAP ACTIVATED
NCW TURN TRAP OFF
ENTER A VALUE FOR X:12
ON GOTO-GOSUB OVERRANGE ERROR AT LINE 30

The ON-GOSUB statement in line 30 transfers program control to one of the two line
numbers listed, provided that the value of X is either 1 or 2. When an out-of-range value is
entered for X, as shown, the error trap is activated and control shifts to line 120. The ERROR
OFF statement in line 140 turns off error trapping and returns control to line 20. Thereafter,
if a number other than 1 or 2 is entered, the compiler prints out the error message shown
above, and program execution is aborted.

Identifying locations and codes of errors
The following special functions can be used to identify the location and nature of errors
trapped:

1 J a n u a r y 1 9 8 0 7 - 7 FDR 3058

7 EDITING AND DEBUGGING

F u n c t i o n D e s c r i p t i o n
ERR Identifies the code number of the trapped error.
ERL Identifies the line number at which an error occurred.
ERR$(num-expr) Outputs the text of the error message associated with an error

code, represented by num-expr.
A complete list of run-time error codes and corresponding messages can be found in
Appendix C.

Using error traps
The following example uses several of the error trap features presented above:

10 INPUT X
15 ON ERROR GOTO 100
20 ON X GOSUB 40, 70
25 PRINT 'X IS': X
30 IF X<5 GOTO 10
35 GOTO 130
40 PRINT 'FIRST SUBROUTINE'
50 X=X+1
60 RETURN
70 PRINT 'SECOND SUBROUTINE'
80 X=X*2
90 RETURN
100 PRINT ERR$(ERR): 'AT LINE' :ERL
110 IF ERR=55 THEN DO
115 PRINT 'NO SUBROUTINE EXECUTED'
120 GOTO 160
110 DOEND
135 ELSE DO
140 PRINT 'TRY AGAIN!'
145 GOTO 10
150 DOEND
160 END
>RUNNHn
FIRST SUBROUTINE
X IS 2
!2
SECOND SUBROUTINE
X IS 4
13
ON GOTO-GOSUB OVERRANGE ERROR AT LINE 20
NO SUBROUTINE EXECUTED
>RUNNH
112
ON GOTO-GOSUB OVERRANGE ERROR AT LINE 20
NO SUBROUTINE EXECUTED
>RUNNH

FIRST SUBROUTINE
X IS 2
1 2 ^ .

SECOND SUBROUTINE

FDR 3058 7 _ g 1 J a n u a r y 1 9 8 0

EDITING AND DEBUGGING 7

r
r

r

r

r

r

X IS 4
!TEN
INPUT DATA ERROR AT LINE 10
TRY AGAIN!
!76
ON GOTO-GOSUB OVERRANGE ERROR AT LINE 20
NO SUBROUTINE EXECUTED

In this program, an error trap condition is set in line 15. If the value input for X is out of
range, that is, evaluates to anything but 1 or 2, the error trap will be activated. Control then
shifts to line 100, where the special error trap functions described earlier are used to
identify the nature and location of the error. The condition in line 110 then directs program
control on the basis of the code of the trapped error. The complete list of error codes can be
found in Appendix C. If the code (ERR) of the trapped error is 55, the first branch of the DO-
DOEND set is expected. The message in line 120 is printed and execution terminates. Any
other error causes the ELSE DO branch to be executed. Control then returns to the first line
in the program, as shown in the final RUN of the program.

PRIMOS condition mechanism
Although most errors can be handled within the BASICV subsystem by the error-trap
statements discussed earlier, there are some situations which cannot be managed by the
compiler. If a "disastrous" event, such as an access violation, or a floating-point error occurs
during execution of a program containing no provision for error-handling, control returns to
PRIMOS, and a special message appears at the terminal. The message has the form:

Error: condition "condition" raised at "address"
[additional information]

A message of this form indicates that the PRIMOS error condition-handler, the "Condition
Mechanism", (see Appendix D, Glossarv) has been activated. PRIMOS has a default system
"on-unit" which traps about 36 types of errors. It is activated only when there is no other on-
unit designated to take control in the event of an error. FORTRAN, PMA and PL/I
programmers can write their own on-units, or error-handlers, to rescue a program in
distress. However, this feature is not needed in BASIC/VM, because a similar capability is
already provided by the BASIC/VM error handling statements. Therefore, most BASICV
programmers don't have to worry about condition mechanism, except to be aware of its
existence.
When the system default on-unit is activated, you can do little but return to the BASIC
subsystem and attempt to debug the program. If there is no error trap in the program
already, it's a good idea to include one.
If the same PRIMOS error message is encountered repeatedly, for a reason not obvious to
you, start a COMOUTPUT file (see Appendix D for details) and run the program again.
After control returns to PRIMOS, close the COMO file, and make a paper copy of it for
future reference. This file is a record of any error messages incurred during program
execution, and may be useful to the system operator in hunting down possible system-level
problems.
You may also want to run BASIC/VM debug (TRACE) or "Performance Measurement" tests
on the program while the COMO file is open. Performance measurement, a very useful
debugging tool, is discussed below.

PERFORMANCE MEASUREMENT
The performance measurement feature of BASIC/VM enables the user to:

1 J a n u a r y 1 9 8 0 7 - 9 F D R 3 0 5 8

7 EDITING AND DEBUGGING

• Measure program efficiency
• Optimize BASIC/VM code

In addition, performance measurement testing may prove a valuable asset to the debugging
process.

Initiating measurement
The performance measurement feature is activated by issuing the PERF ON command prior
to program compilation, that is, before a RUN or COMPILE command is issued. In order for
measurements to be made during execution, special "markers" must be inserted in the code
during program compilation. Thus, the PERF ON command must precede the compilation
process or no measurement results will be obtained.
The program is then EXECUTEd or RUN, and the actual measurements are made. Each time
the program is RUN or EXECUTEd, the old statistics are erased and replaced by new ones.
The complete PERF command format is described below.

The PERF command
The PERF command has the following format:

ON
PERF) OFF f [lin-num-1 [-lin-num-2

TABLE ([screen-size]
HIST

CNT
AVG
TTL

[lin-num-1 [-lin-num-2]]

" >

^

The options are:

O p t i o n D e s c r i p t i o n
ON Turns on performance measurement.
OFF Turns off performance measurement.
TABLE Displays performance data in tabular form.
HIST Displays performance data in histogram form.

The TABLE option: The TABLE option displays all the statistics gathered during program
execution. See Measurement Statistics, below.
The HIST option: The HIST option takes a number of arguments which govern the
particulars of-data display. Any one or all of the statistics gathered during performance
measurement may be displayed in the same histogram. For a description of the AVG, CNT
and TTL options, see Measurement Statistics, below.
screen-size is an optional numeric item which defines the width, or margin value, for the
terminal screen during a histogram display. The default is the currently set margin value.
The default margin value is 80 characters, lin-num-1 specifies the program line number at
which to begin displaying data, lin-num-2 indicates the program line number at which to
stop displaying performance data. (Default is last line in program.) In a histogram display,
the "." character represents AVG data, the "+" character represents TTL, and "*"
represents CNT.

Measurement statistics
Measurement statistics show exactly which program lines are being executed and how long
each statement takes to execute. This feature is very useful in program debugging, as it
allows the user to spot unexecuted program lines, as well as areas of code where
performance is "hanging up."
The performance statistics gathered during program execution are identified by the
following mnemonics:

FDR 3058 7 - 1 0 1 J a n u a r y 1 9 8 0

EDITING AND DEBUGGING 7r
r

r

r

r

Mnemonic Description
AVG The average time each statement took to execute.
CNT The number of times each statement is executed.
DEV The standard deviation of execution time.
SN The line number of each statement executed.
SQSUM The total squared-sum of each statement's running time.
TTL The total running time of each statement.

All times are measured in "ticks", typically 3.03 msec. The standard deviation data can be
used in assessing the data dependence or time-sharing dependence of a statement's
execution time. Average statement times near one tick will usually have high standard
deviations. Therefore, the standard deviation value should be taken into account when
calculating average statement execution times.

Using performance measurement
The program used in this example contains a FOR-loop with an UNTIL modifier. The
performance measurement data shows that the statements which make up the loop are each
executed four times. The relative execution times for every statement in the program can be
compared by checking the TABLE output.

10 X=5
20 FOR 1=1 STEP 1 UNTIL Y>3
30 PRINT X/I
35 Y=Y+1
40 NEXT I
>PERF CN
> COMPILE
>EXECUTE
5
2.5
1.666666666667
1.25
STOP AT LINE 40
>PERF TABLE

S N C N T A V G D E V T T L S Q S U M
1 0 1 0 . 0 0 0 . 0 0 0 ' 0
2 0 1 0 . 0 0 0 . 0 0 0 0
3 0 4 1 . 7 5 0 . 8 3 7 1 5
3 5 4 0 . 2 5 0 . 4 3 1 1
4 0 4 2 . 5 0 4 . 3 3 1 0 1 0 0

>PERF HIST AVG
AVERAGE :

10 .
20 .
30
35
40

>PERF HIST TTL ' " " ° "
TOTAL :

10 +
20 +
30 ^++++4+4-++++-H-^++-m-^+-m-H-+++
35 +-H-+-H-++
40 ^++W++++-H+-H-+W+-H-+++^

1 J a n u a r y 1 9 8 0 7 - 1 1 FDR 3058

7 EDITING AND DEBUGGING

>PERF HIST AVG CNT TTL
COUNT AVERAGE 'TOTAL :

* * * * * * *
* * * * * * *
* *
* *
* *

10
20
30
35
40

II M M-l-H-H-1-+-H-+
-H-+

, I 11 I I I + 1 I I I I 1 1 I 1 -hH-H-4-

The first histog m displays the average execution times of each statement (AVG), in ticks.
The second one displays TTL, the total running time of each statement, also in ticks. The
third histogram displays all three options, including average statement execution times
(AVG), the number of times each statement was executed (CNT), and the total running time
of each statement (TTL).

Obtaining "partial" statistics
While PERF ON is in effect, each time a program is COMPILED or RUN, any existing (old)
measurement data are erased. New measurements are then made. EXECUTE, unlike
COMPILE or RUN, does not erase these existing measurement statistics. This allows a user
to obtain "partial", or "intermediate", results, and to continue gathering performance data
on a program after a BREAK or PAUSE without erasing any previously gathered data.
Consequently, typing CONTINUE will allow the user to observe measurement data
obtained prior to the BREAK or PAUSE.

Spotting bad code
The CNT entry of the TABLE display indicates the number of times each statement is
executed. An entry of 0 (zero) in the CNT column means that the statement was never tested
or executed.

Restrictions
Binary program files cannot be tested with the performance measurement feature. In fact,
a binary program cannot even be COMPILEd successfully if the PERF ON command is in
effect for any reason. Remember to issue PERF OFF before trying to run a binary program.

~ >

" >

FDR 3058 7-12 1 January 1980

'■■

~ >

' ■

ADVANCED
FEATURES

r

r

File handling

I N T R O D U C T I O N
BASIC/VM utilizes all of the file types provided by the File Management System (FMS) of
PRIMOS. These file types, and the type-codes by which they are identified, are:

• ASCII sequential (ASC, the default)
• ASCII sequential separated (ASCSEP)
• ASCII sequential line-numbered (ASCLN)
• ASCII direct access (ASCDA)
• Binary sequential (BIN)
• Binary direct access (BINDA)
• Segment directory (SEGDIR)
• Multiple Index Data Access (MIDAS)

Because these files are all created under the auspices of FMS. file compatibility between
BASICV programs and programs written in other Prime languages (like COBOL, in
terpretive BASIC. FORTRAN) is assured.
Implementation of these data files in BASIC/VM programming is known as "file handling".
File handling usually involves opening (or defining) a file, writing data to the file for storage,
and reading, or retrieving, the data when needed.
ASCII sequential is the BASIC/VM default file type. Its storage and access features are
suitable for many programming needs. The seven other file types offer alternate features which
may optimize storage efficiency and/or program execution when properly utilized.
This section describes the available file types, their features, possible uses, and the
statements needed to perform routine file handling operations. Only the basic information
needed to use these files in routine BASIC/VM programming is contained in this section.
Users requiring more details on file properties, features and uses should consult Appendix
E, Advanced File Handling.

Operation
Opening a file
Writing data to a file
Examining data storage
Reading data from a file

Moving the file pointer

Updating record data
Trapping errors during file
operations
Writing a matrix to a file
Reading data into a matrix
Closing a data file
Deleting a SEGDIR data file

Statement Used
DEFINE
WRITE
TYPE, LIST
READf*],
READLINE
POSITION,
REWIND
WRITE

:rof
ENDON

1 I -Lj

f ERROR 1
\ END J

GOTO

MAT WRITE
MAT READf*
CLOSE
REPLACE

1 July 1982 8-1 FDR 3058

8 FILE HANDLING

OPENING A DATA FILE
The DEFINE FILE statement is the key to all data file operations in BASIC/VM. DEFINEing
a file is relatively simple but involves a number of concepts which are important to all file
handling operations. The DEFINE process does several important things including:

• Reserves buffer space in memory for data storage.
• Names a file.
• Assigns a particular file type to the file.
• Sets the record size for the new file.
• Restricts I/O operations to reading or writing.

The DEFINE statement
The general format of the DEFINE statement is:

READ
FILE #unit = filename [.type-code) [,record-size]DEFINE APPEND

SCRATCH
The parameters are discussed below.
File units
PRIMOS requires some buffer space in physical memory to serve as an intermediary storage
area for each opened file. These buffers are called file units. To open or define a file in
BASIC/VM, a correlation must be established between a filename and a file unit number.
The file unit number is specified by the unit parameter, a numeric expression with a range
of 1 to 12.The number assigned to the file is used as a sort of shorthand reference to the file
throughout subsequent file operations. The #sign is a required part of the statement proper,
and signifies that a data file is lo be opened on the specified unit.
Up to 12 file units may be open and active at one time per user in the BASICV subsystem.
If an attempt to open more than 12 units is made, an error message is displayed.
Filename
Each data file opened must be assigned a name, as represented by filename, a legal BASIC
string expression. A string variable may also be used in place of the string expression. For
example:

10 INPUT A$
20 DEFINE FILE #3 = A$

The name of the file opened on unit #3 is defined by the string contained in A$.The value of
AS depends on the input received from the terminal in response to the INPUT statement in
line 10.

Type-code
As mentioned in the introduction, each file type available under FMS has a particular type-
code by which it is identified to BASIC/VM and PRIMOS. All file types, their corresponding
type-codes, and important features, are listed in Table 8-1. Note that specification of type-
code is optional. The default type is ASCII sequential (ASC).
Record-size
Items in a data file are stored in logical units called records. The size of a record determines
how many characters it can contain. This character limitation is measured in words at the
rate of 2 characters per word. The default record size is 60 words, or 120 characters. The
record size of a file may be increased or decreased by specifying the appropriate numeric ^
value for the record-size parameter. Record size is specified in number of words per record,
as opposed to number of characters. The minimum record size is four words for every file
type. The maximum record size is 1024 words.
Record lengths: In some types of files, all records in the file are fixed to the specified

FDR 3058 y _ 2 1 J a n u a r y 1 9 8 0

FILE HANDLING 8

number of words, or to the default size, if the record-size parameter is omitted. Records in
this type of file are called fixed-length records. Each record in the file is the same length,
even though each record may not contain the same number of data characters. Other types
of files have variable-length records, in which each record is only as long as the data it
contains.
Access restrictions
The optional keywords READ and APPEND place restrictions on I/O operations that can be
performed on a file. The READ argument allows the file to be read from only. No data can
be written to the file while the restriction is in effect. The APPEND argument positions the
read pointer to the bottom of the file when it is opened. Each file has a pointer which keeps
track of the record currently positioned to for reading or writing. This restriction allows data
to be written to the bottom of the file only, unless the pointer is repositioned.

Opening a SCRATCH file
A temporary, or SCRATCH, file may be opened with an abbreviated form of the DEFINE
statement:

f

Table 8-1. File Type-Codes

Type-Code
ASC
(default)

ASCSEP

ASCLN

ASCDA

BIN

BINDA

SEGDIR

MIDAS

Access
Method
SAM

SAM

SAM

DAM

SAM

DAM

SEGDIR

MIDAS

Contents
ASCII data, formatted like terminal output with
spaces as data delimiters. Commas, colons and
semicolons define the appropriate number of
spaces to be used as data delimiters. Records
variable-length and easily inspected.
ASCII data stored with commas inserted as data
delimiters. Data stored and read back exactly as
entered. Records fixed-length, accessed sequen
tially.
ASCII data with comma delimiters, and line
numbers inserted in increments of 10 at the start
of each record. Can be edited at BASICV com
mand level.
Similar to ASCSEP. Records fixed-length and
blank-padded as necessary. Direct access meth
od used for quick, random access to any record
in the file. Comma delimiters inserted.
Data storage transparent to user. Records are
fixed-length, accessed sequentially. String data
stored in ASCII code: numeric data stored in
four-word floating-point form. Provides max
imum precision and speed of access, but cannot
be inspected by TYPE etc.
Same as BIN but direct access method is used for
random record access. Records not data-filled
are zeroed out.
Identifies file as a segment directory. Sub
ordinate files, identified by number, may be
SAM, DAM or other SEGDIR files. An additional
DEFINE is required to access a subordinate file.
Multiple Index Data Access files. Created by
Prime-supplied MIDAS utilities.

1 June 1981 8-3 FDR 3058

8 FILE HANDLING

DEFINE SCRATCH FILE #unit [,file-type] [,record-size]
The indicated unit is opened as a temporary file of any type except MIDAS. When the unit
is CLOSEd, the file is deleted. No filename need be specified. The record size can be
optionally specified; the default size is 60 words. The name convention for SCRATCH files
is: TSnnnn.

18

ACCESS METHODS
Retrieval of data from files is accomplished by one of these four methods:

• Sequential Access Method (SAM)
• Direct Access Method (DAM)
• Segment Directory Access Method (SEGDIR)
• Multiple Index Data Access Method (MIDAS)

Each access method corresponds to a particular file structure. These structures are illustrated
in Figure 8-1. For a representation of MIDAS file structure, refer to the MIDAS User's Guide or
the Subroutine Reference Guide.
Both file structures and access methods are built into the PRIMOS operating system. Access
methods determine how individual file records are identified and retrieved from their
storage place on disk. The two fundamental access methods, sequential (SAM) and direct
(DAM), are explained below. SEGDIR and MIDAS access methods expand upon the
sequential and direct access features and are discussed later in this section.

Figure 8-1

RECORD 1
2

3
4

5
6

VAKIABLt-LtlMCirH RECORDS:

| S A M F I L E

RECORD 1
2
3
4

5
6

FIXED-LENGTH RECORDS:
ACCESSED DIRECTLY

] D A M F I L E
t

SEGMENT DIRECTORY
(1)
(2)
(3)
(4)
(5)
(6)

DATA FILE 2 (SAM)

1
2

DI RECTORY CONTAINS POINT E R 3

D A T A F I L E S (D A M / S A M) 4
5

File Str ucture
EGDI R ORG ANIZAT orj

DATA FILE 5 (DAM)

FDR3058 8-4 1 June 1981

FILE HANDLING 8

More details on the properties of each file type can be found in Appendix E, Advanced File
Handling. The properties of the default file type, ASC. are discussed at length and compared
with the corresponding features of other ASCII file types. Users considering extensive use
of file handling in BASIC/VM should first investigate the features of each file type.

SAM FILE HANDLING

Sequential files can be opened and manipulated by the following set of sequential access
statements:

S t a t e m e n t F u n c t i o n
DEFINE Opens, names and assigns a file type, either ASC. ASCSEP.

ASCLN or BIN and associates it with a file unit.
WRITE. Writes data records of appropriate type to the the opened file
WRITE USING and advances the pointer to the next record after each

r W R I T E .
READ [*] Reads the record at the current pointer position and advances
READLINE the pointer to the next record. Must rewind in order to READ

after a WRITE.
REWIND Returns the pointer to the first record of the file.
ON END Determines the action to be taken if the pointer reaches the

end of the file.
CLOSE Makes sure the file is properly restored to disk and frees the

file unit for other use.
Opening a File

rThe first step in any file handling operation is to open or DEFINE a file. Any of the file typeslisted in Table 8-1 can be opened with DEFINE.
The type-codes which define SAM files are: ASC, ASCSEP, ASCLN and BIN. For example,
the following statement opens an ASCII sequential file with comma separators (ASCSEP
file):

DEFINE FILE #1 = 'ASCSEP', ASCSEP

Writing data to SAM files
Data values are written to a DEFINEd file one record at a time with successive WRITE
statements. Each successive WRITE operation moves the pointer to the next sequential
record, where it awaits the next instruction. Each new WRITE statement adds the indicated
data to a new record in the file.
Below is an example of writing data to each ASCII sequential file type. By TYPEing each file
(using the TYPE command), the data storage patterns of each file type (except binary) can
be inspected.

10 DEFINE FILE #1 - 'FILE11
20 DEFINE FILE #2 = 'FILE2\ ASCSEP
30 DEFINE FILE #3 = 'FILE3', ASCLN
40 A=12
50 B$='TWELVE'
60 FOR N= 1 TO 3
70 WRITE #N, A
80 WRITE #N, B$
90 NEXT N

r l 0 0 C L O S E # 1 , 2 , 3
>RUNNH
STOP AT LINE 100

r>!LOOK AT THE CONTENTS OF EACH FILE:>TYPE FILE1
12

1 J a n u a r y 1 9 8 0 8 - 5 F D R 3 0 5 8

8 FILE HANDLING

'TWELVE
>TYPE FILE2

TWELVE,
>TYPE FILE3

10 12,
20 TWELVE,

Writing to ASC files
Default (ASC) files have unique properties which affect the data written to them. Some of
the properties are discussed below.
In ASC (default) files, successive WRITE statements can be forced to continue writing data
to the same record until the record is filled. A line of data written to an ASC file can contain
colon, comma, or semicolon delimiters between data items. Data will be stored exactly as if
they had been output by a PRINT statement. Each delimiter affects data storage by forcing
a different number of spaces between items in a record:

• A COMMA causes the next item to be placed in the next print zone.
• A SEMICOLON causes the next item to be placed in the next character

position.
• A COLON causes the next item to be placed one character position from

the current item.
The following program writes data to an ASC utilizing each type of delimiter. Each line
output after the "TYPE ASCII" command represents the contents of a logical record.

10 DEFINE FILE #1='ASCII*
20 READ A,B,C,D,E,F,G
25 DATA 22,23,24,25,26,27,28
30 WRITE #1,A,B,
35 WRITE #1,C:D:
40 WRITE #1,E,F;
45 WRITE #1,G
50 WRITE #1,A:B:
55 WRITE #1,C:D:
60 WRITE #1,E:F:
65 WRITE #1,G
70 WRITE #1,A,B,
75 WRITE #1, C:D:
80 WRITE #1,E;F;
85 WRITE #1,G
>TYPE ASCII
2 2 2 3 2 4 2 5 2 6 2 7 2 8
22 23 24 25 26 27 28
2 2 2 3 2 4 2 5 2 6 2 7 2 8

Writing formatted data to a file
The WRITE USING statement is similiar to the PRINT USING statement described in
Section 5. Format strings are used in WRITE USING just as they are in PRINT USING. They
are composed of special characters listed in Tables 14-2 and 14-3. A summary of PRINT —
USING features, applicable to WRITE USING as well, can also be found in Section 14.
Formatted data can be written to any type of ASCII file. However, an attempt to write
formatted data to binary file will generate an error message.

FDR 3058 8 _ 6 1 J a n u a r y 1 9 8 0

FILE HANDLING 8

r

-

WRITE USING format: The WRITE USING statement has two formats:
WRITE jf unit USING format-string, item-1 [,. . . item-n]
WRITE USING format-string, § unit, item-1 [.. . .item-n]

In either case, the format-string may be numeric or string, depending on the data,
represented by item-1 -item-n, to be formatted. For example:

10 DEFINE FILE #1 = 'EXAMPLE'
20 WRITE #1 USING '$###.##', 120
30 WRITE #1 USING '<#####', 'FUNNY'
40 WRITE #1 USING '>#####', 'FUNNY'
50 WRITE #1, 120
60 WRITE #1, 'FUNNY'
70 CLOSE #1
>RUNNH
>TYPE EXAMPLE
$120.00
FUNNY
FUNNY

120
FUNNY

In this first WRITE USING statement, a numeric value is formatted with a decimal point,
two trailing zeroes, and a dollar sign prior to the leftmost digit. The pound signs (-') indicate
how many digits are to be output. If the value was too large for the format string to
accommodate, a string of asterisks would appear in the output. For example:

90 DEFINE FILE #1 = 'FILE'
100 WRITE #1 USING '$###.##', 12000
110 REWIND U
120 READ #1, A$
130 PRINT A$
>RUNNH
* * * * * * *

The second WRITE USING statement in line 30 left-justifies a string datum in the file with
the left-angle bracket (<) symbol. The WRITE statement in line 40 writes the same item with
right-justification. The data written to a file with WRITE USING is stored exactly as
specified by the format string.

Reading SAM files
Data are retrieved from SAM files with the READ statement, as shown in the previous
examples. The READ statement has two variations. READ* and READLINE. All three are
used to obtain information stored in a data file. Specific examples of READing each file type
are included in Appendix E.

Rewinding the file pointer
In order to READ a record prior to the current record, use the REWIND statement to
reposition the pointer to the top of the file. The READ pointer cannot be positioned to
random records in sequential files.
In sequential files, READs cannot take place immediately after a WRITE to the same file. An
attempt to do so generates the following error message:

1 J a n u a r y 1 9 8 0 8 - 7 F D R 3 0 5 8

8 FILE HANDLING

40 PRINT A
45 PRINT
50 READ #1, B
55 PRINT B
60 PRINT

F D R 3 0 5 8 8 - 8 1 M Y 1 M 2

READ AFTER WRITE ON SEQUENTIAL FILE

In order to READ after a WRITE, the file pointer must be returned to the top of the file with
REWIND. An alternative is to CLOSE the file, re-open it and then READ sequentially until
the desired record is reached. When a file is opened, the pointer automatically positions to
the top of the file unless otherwise instructed, as with the "APPEND" option of the DEFINE
command. For example:

10 DEFINE FILE #1 = 'ASC
20 WRITE #1, 12
30 READ #1, A
>RUNNH
READ AFTER WRITE ON SEQUENTIAL FILE AT LINE 30

To RP^AD the data in the file, the program must be modified, as in:

10 define file #1 = 'ASC'
20 write #1, 12
30 rewind #1
40 read #1, A
50 print A
60 close #1
70 end
>runnh
12

The READ* statement
A variation of the READ statement, READ*, holds the file pointer at the current record after
a READ is completed, rather than moving it to the next sequential record. This is
advantageous when performing a series of READs on a single record. If a record contains
several values which are to be retrieved individually during successive READs, the pointer
can be "put on hold" at the current record, enabling another READ to be performed on this
record. The details of READ* are illustrated in the example below. There are a few points
to keep in mind:

• If a default READ (no * option) follows a READ*, the pointer automatically
advances to the next record.

• If a READ* follows a READ*, the current record is read until all the given
variables are satisfied. If necessary, the pointer then advances to the next
record to satisfy any remaining variables in the current READ list.

10 DEFINE FILE #1 = 'READ.FILE', ASCLN
15 WRITE #1, 100, 200, 300
20 WRITE #1, 400,500,600
25 REWIND #1
30 PRINT 'FIRST READ WITHOUT *'
35 READ #1, A

FILE HANDLING 8

rr

r

r

r
r

65 REWIND #1
70 PRINT 'NOW READ WITH READ*1
75 READ* #1,A
80 PRINT A
85 READ* #1, B
90 PRINT
95 PRINT B
100 READ* #1, C
105 PRINT
110 PRINT C
115 CLOSE #1
120 END
>RUNNH
FIRST READ WITHOUT *
100

400

NOW READ WITH READ*
100

200

300

The READLINE statement
READLINE allows the contents of an entire ASCII file record, including commas, colons,
semicolons and spaces, to be read as one data item. This version of the READ statement does
NOT work on binary files. READLINE is especially useful when reading default ASCII or
ASCSEP files which contain data with internal commas. Unlike the READ statement,
READLINE does not interpret commas as data delimiters. Thus strings containing commas
will not be broken up by READLINE. For example, if a record in an ASCII file opened on
unit #1 contains the following:

MARCUS WELBY, M.D.

READ #1, AS would return:

MARCUS WELBY

READLINE #1, A$ would return:

MARCUS WELBY, M.D.

READ vs. READLINE
The following example emphasizes the differences between READ and READLINE for all
ASCII sequential file types.

10 DEFINE FILE #1 = 'ASCRL1
20 DEFINE FILE #2 = 'SEPRL', ASCSEP
30 DEFINE FILE #3 = 'LNRL', ASCLN
40 DEFINE FILE #4 = 'BINRL', BIN

1 J a n u a r y 1 9 8 0 8 _ g FDR 3058

8 FILE HANDLING

50 READ A$, B$, C$
60 DATA 'WHIMSEY, PETER:', 'OXFORD, BALLIOL:', 'DETECTIVE, ETC.1
70 FOR N=l TO 4
80 WRITE #N, A$, B$, C$
90 NEXT N
100 REWIND #1,2,3,4
110 FOR I = 1 TO 4
120 PRINT 'READ FOR FILE ON UNIT #': I
130 READ #1, A$
140 PRINT
150 PRINT A$
160 REWIND # I
170 PRINT
180 PRINT 'READLINE FOR FILE ON UNIT #': I
190 PRINT
200 READLINE #1, A$
210 PRINT A$
220 PRINT
230 REWIND # I
240 NEXT I
250 CLOSE #1,2,3,4
>RUNNH
READ FOR FILE ON UNIT # 1

WHIMSEY

READLINE FOR FILE ON UNIT # 1

WHIMSEY, PETER: OXFORD, BALLIOL: DETECTIVE, ETC.

READ FOR FILE ON UNIT # 2

WHIMSEY

READLINE FOR FILE ON UNIT # 2

WHIMSEY, PETER:, OXFORD, BALLIOL:, DETECTIVE, ETC.,

READ FOR FILE ON UNIT # 3

WHIMSEY

READLINE FOR FILE ON UNIT # 3

WHIMSEY, PETER:,OXFORD, BALLIOL:,DETECTIVE, ETC.,

READ FOR FILE ON UNIT # 4

WHIMSEY, PETER:

READLINE FOR FILE ON UNIT # 4

ILLEGAL OPERATION ON BINARY FILE AT LINE 200

FDR 3058 Q - 1 0 1 J a n u a r y 1 9 8 0

FILE HANDLING 8

r

r

The error message displayed indicates that READLINE is not a legal operation on a binary
file.

Reaching end of file
When the file pointer reaches the end of a file (that is, the last data record) during a READ,
an END OF FILE error message is generated. This error abruptly terminates program
execution. To avoid this, include an "ON END #unit GOTO" statement to tell the program
what to do in the event of an END OF FILE condition. For example, the following ON END
statement transfers program control to a statement which closes the file unit:

10 ON END #1 GOTO 200

200 CLOSE #1

Trapping errors
All types of I/O errors that occur during data file access can be trapped with the "ON
ERROR #unit GOTO" statement, a variation of "ON ERROR GOTO", discussed in Section
7. This statement is generally placed near the beginning of the program. It can be used in
both SAM and DAM files, and is especially helpful when doing multiple READs from a
binary file whose contents are not easily monitored.
In the absence of an error trap statement of some sort, any I/O error, including an end-of-
file, that occurs during file access generates an error message and halts program execution.
Inclusion of an ON END or ON ERROR statement at the beginning of the program eliminates
I/O error-generated program halts, either by transferring control to another line in the
program, or by performing some other action. For example:

10 DEFINE FILE #1 = 'END1', ASCSEP
20 ON ERROR #1 GOTO 80
30 WRITE #1, 'GOVERNOR AS OF 1979'
40 WRITE #1, 'CALIFORNIAVNEW YORK'
45 'WRITE |l, 'JERRY BROWN', 'HUGH CAREY'
50 REWIND #1
60 READ #1, A$
70 READ #1, B
80 PRINT 'ERROR DURING FILE READ'
90 PRINT ERR$(ERR)
100 REWIND #1
110 READ #1, A$,B$,C$,D$,E$
120 PRINT
130 PRINT A$
135 PRINT
140 PRINT B$, C$
145 PRINT D$,E$
150 CLOSE n
160 END
>RUNNH
ERROR DURING FILE READ
INPUT DATA ERROR

GOVERNOR AS OF 1979

1 J a n u a r y 1 9 8 0 8 - 1 1 FDR 3058

8 FILE HANDLING

~ >

CALIFORNIA NEW YORK
JERRY BROWN HUGH CAREY
>!REMOVE ON ERROR STATEMENT IN LINE 20;
>20
>RUNNH
INPUT DATA ERROR AT LINE 70

Without the ON ERROR statement in line 20, the INPUT DATA ERROR, generated by the
variable-data mismatch in line 70, the program fails.

Closing a file
When access to a file is completed, it is a good idea to CLOSE the file. This ensures its proper
restoration to disk, and releases the file unit which was opened for other use. If the file
is not CLOSEd, it may be lost or truncated. A single CLOSE statement can close one or many
file units which have been opened. For example:

CLOSE #1,2,3

DAM FILE HANDLING
The DAM file handling statements are identical to those used in SAM file handling, with the
important exception of POSITION. Below is a list of all available DAM file handling
statements.

S t a t e m e n t D e s c r i p t i o n
DEFINE Opens, names and identifies a direct access file as ASCII

(ASCDA) or binary (BINDA); associates it with a file unit and
optionally sets the record size (in words).

WRITE,WRITE Writes data records to the file opened on specified unit;
USING advances pointer to next sequential record.
POSITION Moves the file pointer to any record in the file.Records are

positioned to by number.
READ[*], Reads values from record to which pointer is currently
READLINE positioned; advances pointer to the next record unless * is

specified. Random reads can be done by POSITIONing the
file pointer.

REWIND Returns pointer to first record (top) of file.
ON END Establishes action to be taken when pointer reaches the end

of the file.
CLOSE Closes file to reading and writing and releases file unit for

other use.

Defining DAM files
Direct access files are opened in the same manner as are SAM files. (See the DEFINE
statement, above.) Records in a DAM file can be set to a value larger or smaller than the
default of 60 words (120 characters) when the file is first defined. The minimum is 4 words;
the maximum 1024. The record size of a DAM file is adjusted according to the value given,
or to the default value. This value remains in effect for every record added to the file.
Details on adjusting the record size of a DAM file can be found in Appendix E.
Direct access files are either ASCII or binary, as are sequential files. Direct access files are
identified in BASIC/VM by the type-codes ASCDA or BINDA.

FDR 3058 Q - 1 2 1 J a n u a r y 1 9 8 0

FILE HANDLING 8

r

r

r

r

r
r

This statement defines an ASCII direct access file with a record size of 35 words (70
characters):

DEFINE FILE #1='DIRECT1, ASCDA, 35

Writing data to DAM files
Data is stored in ASCDA files just as in ASCSEP files, that is with comma delimiters.
Commas are inserted as internal data markers in both types, so string values containing
commas will be broken up. Semicolons, commas and colons used as delimiters in WRITE
statements are ignored, as shown below:

10 DEFINE FILE #1 = 'ASCDA', ASCDA
20 DEFINE FILE #2 = 'BINDA', BINDA
30 READ A$,B,C,D
40 DATA 'TRIANGLE DIMENSIONS',12,13,14
50 WRITE #1,A$
60 WRITE #1,B;C;D
70 WRITE #2, A$
80 WRITE #2,B,C,D
90 CLOSE #1,2
>RUNNH
STOP AT LINE 90
>TYPE ASCDA
TRIANGLE DIMENSIONS,

12,13,14,

Random access to DAM file records
The major advantage of DAM files over SAM files lies in their record access flexibility. The
file pointer can be moved to any record in the file with the POSITION statement. Records
are positioned to by number. The number corresponds to the position of the record relative
to the top of the file. The record at the top of the file is record 0, and is the first record in the
file. It is positioned to with the statement:

POSITION #unit TO 1
Notice that the statement does not position to 0. The second record in the file is reached by
stating:

POSITION #unit TO 2
and so forth. An out-of-range record number causes the END OF FILE message to be
displayed. The data in the currently positioned record can then be obtained with a READ
statement.
The LIN# function in DAM files: The LIN#(unit) function can be used in DAM file access to
check the record number to which the pointer is positioned. Instead of returning a line
number as it does in ASCLN files, it returns the number of the current record in the file For
exam-pie, if the statement, POSITION #1 TO 1. is issued, LIN#(unit) would return the record
number as 0, not 1. The first record in the file is record 0, not record 1, according to the LIN
function.
The following example shows random access to a direct access file called "BOOKS" The

ol6A??nteiltS are disPlayed by usinS the TYPE command. The file is then re-opened forREAD access only and data are retrieved with the POSITION and READ statements The
LIN# function shows where the pointer is at various stages during record access. Note that
alter each READ, the pointer automatically advances to the next record.

1 J a n u a r y 1 9 8 0 8 - 1 3 FDR 3058

FILE HANDLING

" >

>TYPE BOOKS
BIBLIOGRAPHY, RE. DOROTHY L. SAYERS,
TITLE: MURDER MUST ADVERTISE,
PUB. DATE: JUNE, 1933,
SUBJECT: LORD PETER, ALIAS DEATH BREDON, WORKS FOR AD FIRM,
INVESTIGATES DEMISE OF PREDECESSOR,
>!Define a READ only file.
XDEFINE READ FILE #1='BOOKS', ASCDA, 30
>! Find out what record we're at in file.
>PR1NT LIN #(1)
0
XREAD #1, A$
XPRINT AS
BIBLIOGRAPHY
XPRINT LIN #(1)
1
>POSITION #1 TO 5
XREADLINE #1, B?
>PRINT B$
INVESTIGATES DEMISE OF PREDECESSOR,
>POSITION #1 TO 3
XPRINT LIN #(1)
2
XREADLINE #1, A$
> PRINT A$
PUB. DATE: JUNE, 1933,

When opening a file for READing only, the record size need not be given; however if an
incorrect record size is specified, the error message: DA RECORD SIZE ERROR is returned.
In this example, the record size is set to 30 words (60 characters), as originally defined.
In direct access, the file pointer scans through a list of pointers for each record in the file
and locates the desired record. The pointer determines the actual location of this record by
counting the number of characters it has to bypass in order to reach the desired record. The
LIN# function indicates where the pointer is positioned at any given time. For example, after
an optionless READ is done, the pointer advances to the next sequential record, as shown.

Reading DAM files
DAM file READs are done in the same manner as are SAM file READs, that is, READ,
READ* and READLINE work in direct access just as they do in sequential access. After each
READ is completed, the file pointer is advanced to the next sequential record. READ* holds
the pointer at the current record until all the variables specified in the next READ statement
have been satisfied, or until the last value in the current record has been read. In ASCDA
files, READLINE returns all the values in a record as one datum, commas, semicolons, etc,
included.
If a file has been previously DEFINEd and written to, it can be opened and restricted to
READ or APPEND access by using the READ or APPEND options of the DEFINE statement,
as in the previous example.

Trapping error in DAM files
END OF FILE errors, as well as other execution mishaps, can be trapped via the ON END
and ON ERROR statements discussed earlier under SAM file handling. These statements
are applicable to direct access files as well as sequential files.

FDR 3058 Q - 1 Q . 1 J a n u a r y 1 9 8 0

FILE HANDLING

Closing a DAM file
Direct access files are closed in the same manner as are SAM files. It is a good practice to
close all data files when you are finished using them. If you are accidentally returned to
PRIMOS command level during program execution due to an access violation, for example,
any file units left open can be closed with the CLOSE ALL command. See Section 3.

SEGMENT DIRECTORIES
A segment directory is actually a list of numbered entries which contain the addresses of
data files. These numbered entries, referenced by number only (no names) are called
"pointers" because they point to, or reterence, data files. The files to which they point can
be of any file type supported by BASIC/VM.

Note
Use of segment directories via the SEGDIR file type is dis
couraged. To obtain similar results use MIDAS. For complete
details see the MIDAS User's Guide.

18

Creating a segment directory
Segment directories themselves contain no data in immediately accessible form. Instead,
they maintain a list of pointers to individual data files which contain accessible data.
To create a segment directory, you must first set up the "template", or, "skeleton", for the
directory. Unlike the other file types discussed previously, data cannot be written directly
to this segment directory. Individual data files must be opened under the segment directory.
The only entry in the segment directory is a list of pointers to the data files that have been
created under it.
Opening a data file under a SEGDIR: To open a data file under a segment directory, you
must first open, or DEFINE, the data file on any file unit not currently in use. The file unit
on which the segment directory was opened should remain open throughout the data file
creation process. Any type of data file described in this section can be defined under a
segment directory.
Identifying a SEGDIR data file: Data files are not named in the usual manner; in fact, they
are not "named" at all. Instead, they are identified by number according to the order in
which they are listed under a particular segment directory.
A special "shorthand" convention is used to identify the data file as a segment directory
entry. The "(SD#unit)" convention, where #unit represents the file unit number on which
the segment directory is open, tells the file-handler that the file unit being opened is
reserved for a data file listed under a currently open segment directory. The letters "SD"
identify the previously opened segment directory. Thus, if a segment directory is opened on
file unit #1, any data file created under it will be identified by the convention: "(SDl)".
Adding data to a SEGDIR file: After opening a data file, data can be added to it with the
WRITE #unit statement. When you are finished working with a data file, CLOSE the file unit
on which it is open.
Creating successive data files: If you want to create another data file under a particular
SEGDIR, POSITION the file pointer to the next sequential record in the segment directory.
Then, repeat the DEFINE, WRITE, and CLOSE sequence just described.
Each time you move the pointer and DEFINE a new file, a new entry is added to the
directory, identifying the location, or address, of the new data file. If the pointer is NOT
positioned to another record location, the next DEFINE statement will overwrite the data
that exists in that segment location.

1 June 1981 8-15 FDR3058

FILE HANDLING 8

Setting up a sample SEGDIR
This sample program sets up a segment directory using the procedure described above. This
particular program first opens a segment directory on unit #1 and calls it "SEGA". Then, two
separate data files are created under it. The first file is an ASCLN file: the second, ASCSEP.
As many files as desired can be added to a segment directory by following the procedure
outlined above and illustrated here:

1 J u n e 1 9 8 1 8 - 1 5 A F D R 3 0 5 8

8 FILE HANDLING

10 DEFINE FILE #1 = 'SEGA', SEGDIR
20 DEFINE FILE #2 = '(SD1)', ASCLN
30 WRITE #2, 'FIRST DATA FILE'
40 CLOSE #2
50 I NOW POSITION #1 TO 2 AND CONTINUE AS ABOVE
60 POSITION #1 TO 2
70 DEFINE FILE #2='(SDl)', ASCSEP
80 WRITE #2, 'SECOND DATA FILE1
90 CLOSE #2
95 IRepeat above sequence until all data files are created.
100 CLOSE #1
110 END

Accessing a segment directory data file
The process of opening an existing SEGDIR data file is identical to that just shown. Using the
above SEGDIR as an example, the steps taken are:

1. DEFINE (open) SEGA on an available file unit.
2. Position the file pointer to the desired record entry.
3. Open the desired data file on an available file unit.
4. Use the READ or WRITE statements to perform desired file I/O.

A typical data file access situation is represented in the sample terminal session below.
Tracing through the above procedure steps, the program first opens SEGA on file unit 1 with
the statement:

DEFINE FILE #1='SEGA', SEGDIR

The segment directory is now open on file unit 1. Next, the file READ pointer is positioned
to the first entry in the directory:

POSITION #1 TO 1

The file pointer is now at segment number 1 which contains the address of data file 1.
The next step is to open this data file on a file unit, in this case, file unit #2:

DEFINE FILE #2 = '(SDl)'

Note that the "(SDl)" naming convention is required to identify the location of the data file.
Specification of a data file type is optional. The file unit on which the segment directory is
open must remain open as long as any data files under it are being accessed.
Sample data file access: The program below opens the previously defined segment
directory, SEGA, on file unit #1. The POSITION statement is then used to position the file
read pointer to the first record location in the segment directory. The first entry in this
directory references the ASCLN data file created in the previous program. After access to
the first data file is completed, the unit, #2, is closed. The POSITION statement is then used
to advance the pointer to another entry and the sequence is repeated:

100 DEFINE FILE #1 = 'SEGA', SEGDIR
110 POSITION #1 TO 1
120 DEFINE FILE #2 = '(SDl)'
130 READ #2, A$
140 PRINT A$

F D R 3 0 5 8 8 - 1 6 1 J u n e 1 9 8 1

FILE HANDLING 8

r
~

'

150 CLOSE #2
160 POSITION #1 TO 2
170 DEFINE FILE #2 = '(SDl)'
180 READ #2, A$
190 PRINT A$
200 CLOSE #2
210 PRINT 'THAT IS THE END OF THE SEGDIR1
220 CLOSE #1
230 PRINT 'BYE!'
240 END
>RUNNH
10 FIRST DATA FILE

SECOND DATA FILE
THAT IS THE END OF THE SEGDIR
BYE I

Restrictions: There are several points to keep in mind when dealing with segment
directories. Only one SEGDIR data file can be opened at a time, because of the "(SD#unit)"
naming convention restriction. It is also illegal to attempt a READ or WRITE operation on a
segment directory. For example, if SEGA is opened on unit #1, "READ #1, A$", would
produce the error message:

ILLEGAL OPERATION ON SEGDIR

Nesting segment directories
Any type of file may be placed under a segment directory, including another segment
directory. The process of "nesting" segment directories is exemplified below.
First, segment directory SEGB is opened on unit #1. Then another segment directory,
identified by (SDl), is defined under it. Finally, keeping both file units open, a data file is
defined under the "nested" segment directory. This data file is identified by the convention
"(SD2)", which indicates that it is listed under the second SEGDIR which is open on unit 2.

10 DEFINE FILE #1 = 'SEGB', SEGDIR
20 POSITION #1 TO 1
30 DEFINE FILE #2 = '(SDl)', SEGDIR
40 DEFINE FILE #3 = '(SD2)', ASCLN
50 WRITE #3, 'DATA FILE UNDER SEGDIR WHICH IS UNDER SEGB'
60 CLOSE #3
70 CLOSE #2
80 CLOSE #1
>RUNNH
STOP AT LINE 80

These nested directories and data files are accessed as shown here:

10 DEFINE FILE #1 = 'SEGB', SEGDIR
20 POSITION #1 TO 1
30 DEFINE FILE #2 = '(SDl)', SEGDIR
40 DEFINE FILE #3 = '(SD2) *
50 READ #3, A§
60 PRINT A$
70 CLOSE #1,2,3

1 J a n u a r y 1 9 8 0 8 - 1 7 FDR 3058

FILE HANDLING

80 PRINT 'ALL DONE'
90 END
> R U N N H ^ ^ o
10 DATA FILE UNDER SEGDIR WHICH IS UNDER SEGB
ALL DONE

Notice that both file units on which the segment directories were opened must be kept open
during access to the data file under the "nested" SEGDIR. Be careful of nesting segment
directories too deeply or you may run out of file units in the process!

Deleting segment directory data files
Data files in a segment directory are deleted with the REPLACE statement:

REPLACE £unit SEG x BY SEG y
The parameters, x andy , are numeric items which represent pointers to two data files, (x)
and (y) respectively. These files must exist under the segment directory opened on the
indicated file unit. REPLACE deletes data file (x), and moves pointer y into pointer x,
leaving the location at pointer y empty. The original (x) is gone, and the original (y) has been
renamed (x). The program below illustrates this process. Refer also to Figure 8-2 for a visual
interpretation.
The first program listed here reads the contents of several data files under the segment
directory SEGA. Clearly, the three files are listed in consecutive numerical order in the
d i r e c t o r y . _

10 DEFINE FILE #1 = 'SEGA', SEGDIR
20 POSITION #1 TO 1
30 DEFINE FILE #2 = '(SDl)'
40 READ #2, A$
50 PRINT A$
60 CLOSE #2
70 POSITION #1 TO 2
80 DEFINE FILE #2 = '(SDl)'
90 READ #2, A$
100 PRINT A$
110 CLOSE #2
120 POSITION #1 TO 3
130 DEFINE FILE #2 = '(SDl)'
140 READ #2, A$
150 PRINT A$
160 CLOSE #2
170 PRINT 'ALL DONE'
180 END
>RDNNH
10 FIRST DATA FILE
SECOND DATA FILE
THIRD DATA FILE
ALL DONE

The second program shows what happens when the pointer in segment 3 is
moved to segment 1. Data file 1 is erased and data file 3 takes its place.

5 ON ERROR GOTO 220
10 DEFINE FILE #1 = 'SEGA', SEGDIR

o - i o 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 8 _ 1 ° '

FILE HANDLING 8

r

20 REPLACE #1 SEG 1 BY SEG 3
30 POSITION #1 TO 1
40 PRINT 'FIRST ENTRY IN SEGDIR:'
50 DEFINE FILE #2 = '(SDl)'
60 READ #2, A$
70 PRINT A$
80 CLOSE #2
90 PRINT 'SECOND ENTRY IN SEGDIR: '
100 POSITION #1 TO 2
110 DEFINE FILE #2 = '(SDl)'
120 READ #2, A$
130 PRINT A$
140 CLOSE #2
150 POSITION #1 TO 3
160 PRINT 'THIRD ENTRY IN SEGDIR'
170 DEFINE FILE #2 = '(SDl)'
180 READ #2, A$
190 PRINT A$
200 CLOSE #2
210 GOTO 230
220 PRINT 'NOTHING THERE ANYMORE!!!'
230 CLOSE #1
240 END
>RUNNH
FIRST ENTRY IN SEGDIR:
THIRD DATA FILE
SECOND EI TRY IN SEGDIR:
SECOND DATA FILE
THIRD ENTRY IN SEGDIR
NOTHING THERE ANYMORE!!!

The REPLACE statement in line 20 deletes the first data file under the segment directory and
replaces it with data subfile 3, leaving the third segment empty. The READs show what
actually takes place in the segment directory when a data file is deleted. The ON ERROR
statement is included to trap the READ error that occurs when a READ is attempted on the
no-longer-existent data file in segment 3.

Deleting segment directories
The simplest way to delete an entire segment directory is to use the FUTIL command of
PRIMOS. See Appendix D for details on FUTIL and its subcommands. Like all PRIMOS
commands, it is issued from PRIMOS. not BASICV, command level. The "TREDEL"
subcommand of FUTIL deletes any kind of segment directory, including MIDAS files.
TREDEL is issued in response to FUTIL's right-angle bracket prompt character (>).
This example shows how a segment directory (SEGA) is deleted from PRIMOS command
level. Notice that the "FUTIL" command, which can be typed in upper- or lower-case letters,
is issued in response to the "OK," prompt.

OK, FUTIL
[FUTIL rev 17.0]
XTREDEL SEGA
> Q

OK,

1 J u n e 1 9 8 1 8 - 1 9 F D R 3 0 5 8

BEFORE
X

Y

AFTER;
X
Y

DELETED

Figure 8-2. Deleting a SEGDIR Data File

18

18

MIDAS FILE HANDLING IN BASIC/VM

MIDAS, or the Multiple Index Data Access System, is a collection of interactive utilities and
subroutines for managing index-sequential and direct access data file. MIDAS provides the pro
grammer with an efficient method of building, restructuring, deleting, searching and accessing
keyed-index data files. Data entry lockout protection and multiple user access to files are also
supported by MIDAS. BASIC/VM does not support the following MIDAS features: direct
access and secondary-index data. For more information on the features of MIDAS and its
related utilities, consult the MIDAS User's Guide.

Note
For an up-to-date description of all the BASIC/VM MIDAS
access statements, see Section 8 of the MIDAS User's Guide.

Brief description of MIDAS files
The first step in building a MIDAS file is the creation of a template, or file descriptor, for
the MIDAS file. The PRIME-supplied utility CREATK, is used to do this. CREATK is invoked
from PRIMOS command level; It sets up a MIDAS file template that can then be accessed
by a variety of methods, including other MIDAS utilities, BASIC/VM programs and COBOL
programs, to name a few.

FDR3058 8-20 1 June 1981

FILE HANDLING 8

CREATK prompts the user for input describing the file to be created. The parameters
supplied include the filename, access type, and data subfile information including key type
and key size for both primary and secondary indexes.

r
1 J u n e 1 9 8 1 8 - 2 0 A F D R 3 0 5 8

FILE HANDLING 8

A MIDAS file can contain up to 18 indexes, that is. 1 primary and 17 secondary indexes.
Maintenance of the file can be done by multiple users simultaneously. A lockout subroutine
guards against simultaneous changes and deletions of data entries. Other operations are
done by exclusive single-user access.

MIDAS file configuration
Although MIDAS provides its own methods of accessing files, the statements provided by
BASIC/VM allow the user to access data in a MIDAS file and use it in a BASIC program.
These statements can be thought of as operating on a MIDAS file configured as a rectangular
matrix or two-dimensional array. Each element of the matrix contains a unique data record
pointer. Access to the data records is accomplished by specifying the correct "coordinates"
of a particular element or key in the matrix. See Figure 8-3.

INDEX SUBFILE (KEY NUMBER) (K)

KEY (0.1:

* ,
KEY Mr

\
KEY (2.1!

^ x
ARROWS ARE POINTERS

TO DATA RECORDS

POSITION
(KEY VALUE) 2

(P)
KEY (0.21

A

KEY (0.3)

Figure 8-3. Configuration of a MIDAS file

The values of K and P (in the previous diagram) form the coordinates of data record
pointers.
During a file read, the "READ" pointer moves around the array, allowing the user to obtain
either the key or the data record pointed to by the key. Initially, the file "READ" pointer is
set to the first primary key or the upper left corner of the matrix.

MIDAS access statements
The statements used to access MIDAS files in BASIC/VM are similar in function and format
to the other file handling statements discussed earlier in this section. The parameters and
arguments must be supplied in legal BASIC form. These statements are designed to perform
a consistent and complete set of movements around a MIDAS file structure, so that any
sequence of statements may be used without inconsistent or unpredictable results. These
statements are listed in the table below:

i January 1980 8-21 FDR 3058

[LE HANDLING

S t a t e m e n t F u n c t i o n
DEFINE Opens existing MIDAS file on specified unit.
ADD Adds record to end of MIDAS file. Does not change current

record location.
READ[KEY] Reads data from MIDAS file: optional arguments specify

record location. KEY option returns value of key to which
pointer is currently positioned.

POSITION Moves read pointer to any record in file; locks on record until
pointer is re-positioned.

REWIND Rewinds pointer to lop of indicated column in file (see Figure
8-3) or to beginning of file, (default).

UPDATE Adds data to current record.
REMOVE Deletes one or more keys from MIDAS file: if primary key,

deletes associated data.
CLOSE Closes MIDAS file on indicated unit.

DESCRIPTION OF MIDAS ACCESS STATEMENTS
The complete formats of the statements available for MIDAS file access in BASIC/VM are
presented and explained in the text below. The examples supplied with the descriptions of
each statement are taken from an actual MIDAS access program called, "MIDASDEMO". A
complete listing of this BASIC program is included later in this section.

Terms and conventions
The following is a list of special terms and conventions used in the MIDAS access statement
formats:

Symbol
UJ
L..J

Term
#unit
KEYO
PRIMKEY
SAMEKEY

Definition
Select any one of the vertically stacked elements.
Enclosed items are optional.
Indicates repetition, 0 or more times.
Indicates repetition, 1 or more times.
Definition
Represents file unit on which MIDAS file is opened.
Represents the primary key.
Positions to or returns datum only if next key matches cur
rent one.

SEQ Supplied in lieu of key: next sequential record is posi
tioned to and read.

num-expr-x Represents numeric expression.
str-expr-x Represents string expression.

ACCESSING MIDAS FILES
The BASIC/VM statements available for MIDAS file access are described below. The
examples supplied with the descriptions of each statement are taken from the MIDAS
DEMO program following the presentation of MIDAS access statements.

Opening a MIDAS file
The DEFINE FILE statement opens a MIDAS file on an indicated file unit. If the record size
is specified, the internal buffers are dimensioned to this value. The default record size is 60
words (120 characters). The record size should be equal to the length of the data record. This

FDR 3058 8-22 1 July 1982

FILE HANDLING 8

information is defined in the MIDAS file by the CREATK utility. The DEFINE statement
format is:

DEFINE FILE gSunit = str-expr, MIDAS [,num-expr-l]
Parameter Defini t ion
*unit file unit number on which file is opened
st r -expr MIDAS fi lename
num-expr-1 record size (in words) (default=60)

An example of the DEFINE statement is:

DEFINE FILE #1= 'DIR', MIDAS, 50

This statement opens a MIDAS file called "DIR" on unit 1, with a record size of 50 words.

Positioning the file pointer
The position statement positions the read pointer to any record in the MIDAS file. The
record is locked upon positioning and unlocked when the pointer is POSITIONed to another
record. Note that there are no specific "lock" and "unlock" statements in BASIC/VM.

POSITION ifunit,

Parameter
num-expr

str-expr
For example:

SEQ
KEY [num-expr] =

SAME KEY
str-expr

Definition
secondary key number
(index subfile number)
key value(primary or secondary)

POSITION #1, SAME KEY

Reading a MIDAS file
Data are retrieved from a MIDAS file with the READ statement. The KEY, SAME KEY or
SEQ options are used to specify the location of the record to be read. The READ KEY
statement gives the actual value of the current key to which the pointer is positioned.

s e q ;
[,KEY [num-expr] = str-expr] > , str-var

SAME KEY
READ [KEY] £unit

Parameter
num-expr
str-expr
str-var

Definition
Index subfile number
Key value
Variable into which data is read from record

For example:

READ #1, SEQ, A$

If SEQ is used in place of a key, the next sequential record, in key order, is read. SAME KEY
returns a datum only if the next key is the same as the current one. If the keys do not match,
an error trap is taken. READ statements pre-position and lock to the location specified by the
KEY, SAME KEY or SEQ (sequential)options. The data is then read and returned in the
specified string variable. In the optionless form of READ, (for instance, READ #1, XS), no
positioning occurs and only the current record is read.

1 June 1981 8-23 FDR 3058

8 FILE HANDLING

Writing to a MIDAS file
The ADD statement adds a record to the MIDAS data base. It does not change the current
r e c o r d l o c a t i o n . / \

<J PRIMKEY IADD //unit, str-expr-1, (KEY [0-expr]) = str-expr-2 keylist
where keylist = [,KEY num-expr-1 = str-expr-3] *

Parameter Defini t ion
0-expr Expression evaluating to zero
str-expr-1 Value of new record
str-expr-2 Primary key value
str-expr-3 Value of secondary key
num-expr-1 Secondary key number (index subfile number)
keylist List of secondary key numbers and values

For example:

ADD #1, X$, KEY0 = I$(l)

Updating a record
The UPDATE statement overwrites the current record with a user-specified string which rep
resents the "new" record value. If keys are being stored in the record, the UPDATE statement
should not be used for changing these keys. BASICV does not monitor internal record structure
and cannot determine changes made to a key field.

UPDATE #unit, X$

X$ represents the string expression which will update the current record by overwriting it.

Deleting MIDAS file keys
The REMOVE statement deletes a given key from the MIDAS data base. If the key is a
primary key (where num-expr=0) then the data associated with the primary key also is
deleted. The language permits both multiple and single key removal in a single statement.

REMOVE #unit [, KEY [num-expr] = str-expr] +

Repositioning the file pointer
The REWIND statement is used to reposition the file pointer from the current index subfile
to a specified point. This can be thought of as positioning the pointer to the top of an
indicated column. If the key specification is omitted, the default KEY 0 is assumed. This
positions the pointer to the upper left corner of the matrix (equivalent to REWIND #unit,
KEY 0).

REWIND #unit [, KEY num-expr]
For example, the following statement repositions the pointer to the top of index subfile 3:

REWIND #lr KEY 3

Closing a MIDAS file
A MIDAS file is closed in the same manner as the data files previously discussed. The
format is:

CLOSE #unit

F D R 3 0 5 8 8 - 2 4 1 J u n e 1 9 8 1

FILE HANDLING 8

-

r

r

Deleting a MIDAS file
MIDAS files cannot be deleted from within the BASICV subsystem. They can be deleted
from PRIMOS command level with the FUTIL command. Use the TREDEL subcommand, as
shown in the example under Deleting a Segment Directory, earlier in this section. See
Appendix D for additional information on FUTIL.

Setting up a MIDAS file with CREATK
The first step in using a MIDAS file is to set up a template for it with the CREATK utility. The
template is a skeleton for the file. It defines the keys on which data will be searched during data
retrieval. CREATK prompts the user for template information as shown in the example below.
The template created by this example is used by the MIDASDEMO program.

OK, creatk
[CREATK rev 18.0]

MINIMUM OPTIONS? yes

FILE NAME? dir
NEW FILE? yes
DIRECT ACCESS? no

DATA SUBFILE QUESTIONS

ERIMARY KEY TYPE: ascii
PRIMARY KEY SIZE = : w 16
DATA SIZE = : 64

SECONDARY INDEX

INDEX NO. ? 1

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: ascii
KEY SIZE = : w 16
SECONDARY DATA SIZE - : (CR)

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: ascii
KEY SIZE = : w 16
SECONDARY DATA SIZE = : (CR)

18

1 June 1981 8-25 FDR3058

FILE HANDLING

18

INDEX NO. ? 3

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: ascii
KEY SIZE = : w 16
SECONDARY DATA SIZE =

INDEX NO. ? (CR)

(CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
OK,

After the template has been set up, the record information can be added to the file with the
MIDASDEMO program, listed below.

Accessing the MIDAS file
The following program, MIDASDEMO, illustrates the use of the BASIC/VM MIDAS access
statements to add data to and retrieve record information from the MIDAS file set up earlier
with CREATK. A description of the functions defined in the program follows.

** A VERY SIMPLE 'MIDAS QUERY LANGUAGE1 **

MIDAS Demonstration Program

This program demonstrates the use of MIDAS in a simple
application. Central ideas to note are the use of multiple
keys, storage of key fields as data, and the use of BASICVs
string functions to automatically control string lengths,
to perform space-padding, and facilitate string comparisons.

The functions available via this program are:
FIND [ALL] field-name field-value

Finds one or all of the records with a the given value
in the field specified by field-name. Field names
are requested from the user at the start of the program.

ADD
Allows the user to add a record to the data base.
The user is prompted with the field names before

being required to type in the record.
LIST
Lists out all records in the file.

100 ON ERROR GOTO 680 ! first set a single error handler
110 DIM I$(10) 1 the input array
115 !
116 ! First define all needed functions
117 !
120 DEF FNP$(X$,N) ! pads X$ with spaces on right such that total

length is N
130 Y$=X$
140 Y$=Y$+' ' UNTIL LEN(Y$)=N

1 !
2 !
3 !
4 1
5 1
6 !
7 !
8 !
9 !
10 !
11 1
12 i
13 1
14 !
15 !
16 1
17 !
18 i
19 1
20 i
21 !
22 !
23 1

FDR3058 8-26 1 June 1981

FILE HANDLING 8

■

r

r

150 FNP$=Y$
160 FNEND
161 !
162 i
170 DEF FNK(F$) i returns a key (index subfile) number given a field

name
180 FOR I = 1 TO 10
190 FNK = 1-1
200 IF K$(I)=F$ THEN GOTO 220
210 NEXT I
220 FNEND
221 !
222 !
230 DEF FNI 1 input function - gets space-separated strings from TTY

and
231 1 stores the sequence in 1$(1). . .1$(n)
240 INPUTLINE '.',X$ 1 prompt with a '.'
250 X$=X$+' '
260 MAT I$=NULL
270 FOR I = 1 STEP 1 UNTIL CVT$$(X$,2) =" 1 CVT$$ insures no blanks
280 I$(I) = LEFT (X$,INDEX(X$,« ')-l)
290 X$ = RIGHT(X$,INDEX(X$,' ')+l)
300 NEXT I
310 FNEND
311 I
312 I
320 DEFINE FILE #1='DIR',MIDAS,64
330 MATINPUT 'Fields: \K$(*) I field names, in order from KEY 0
331 i
332 ! ** main loop **
333 1
340 D=FNI I input command string
345 i
346 1 FIND ALL
347 !
350 IF I$(1)='FIND' AND I$(2)='ALL' THEN DO
360 POSITION #1, KEY FNK(1$(3))=1$(4)
370 READ #1, X$
380 PRINT CVT$$(X$,16) 1 compress strings of blanks to one blank
390 POSITION #1, SAME KEY 1 find all records with this key value
400 GOTO 370
410 DOEND
411 !
412 i FIND
413 I
420 IF I$(1)='FIND' THEN DO
430 READ #1, KEY FNK(1$(2))=1$(3) , X$
440 PRINT CVT$$(X$,16)
450 GOTO 340
460 DOEND
461 !
462 ! ADD
463 !
470 IF I$(1)='ADD' THEN DO

1 J a n u a r y 1 9 8 0 8 - 2 7 FDR 3058

8 FILE HANDLING

PRINT K$(I) : FOR I = 1 TO 4
490 PRINT ■ ';
500 D = FNI
510 I$(1)=FNP$(I$(1),32) ! write data must be padded to correct

length
520 I$(2)=FNP$(I$(2),32)
530 I$(3)=FNP$(I$(3),32)
540 I$(4)=FNP$(I$(4),32)
550 Z$=I$(1)+1$(2)+I$(3)+I$(4)
560 ADD #1,Z$,KEY0=I$(1),KEY1=I$(2),KEY2=I$(3),KEY3=I$(4)
570 GOTO 340
580 DOEND
581 !
582 ! LIST
583 !
590 IF I$(1)='LIST' THEN DO
600 REWIND #1 ! default is KEY 0
610 READ #1, X$
620 PRINT CVT$$(X$,16)
630 POSITION #1, SEQ
640 GOTO 610
650 DOEND
651 i
652 !
660 PRINT '?' ! command error
670 GOTO 340
671 !
6801 a single error handler I!!!
681 !
690 IF ERR=56 AND ERL=390 THEN GOTO 340
695 IF ERR=56 AND ERL=630 THEN GOTO 340
700 PRINT ERR$(ERR) :'AT LINE'rERL I fall through to system error
720 END

Description of MIDAS demo program
The MIDASDEMO program sets up a series of functions to make record access more
flexible. Most of the MIDAS access statements described earlier are included in the Demo
and are described in the context of the program. The user-defined functions in this program
make use of the string system functions listed in Table 10-2. These user-defined functions
are:

F u n c t i o n D e s c r i p t i o n
FNP$(X$,N) Pads a given string, X$, with spaces to make it equal to length

N. Uses system function LEN(Y$) which returns the number
of characters of string Y$.

FNK(F$) Returns a key (index subfile) number given a field name.
FNI The input function; accepts string input from the terminal

(TTY) and stores it in an array. Uses these system functions:
CVT$$- which reformats a given string according to the
indicated mask (listed in Table 10-3); INDEX(X$,Y$)- com
putes the starting position of Y$ in X$. (In this case, finds first ^
blank space in X$.) LEFT(X$,Y)- returns the leftmost Y
characters of string X$.(In this case, returns first characters
immediately to the left of the first blank.) RIGHT(X$,Y) - ^
returns rightmost Y characters of string X$. In this case,
returns those beginning after the first blank found in X$.

o _ 9 0 1 J a n u a r y 1 9 8 0

* >

FDR 3058

FILE HANDLING 8r

r

r

Opening the MIDAS file: After defining the functions that accept and organize input for the
data file, the program opens the MIDAS file called "DIR"on file unit #1. A record size of 64
words is specified, meaning that data in excess of 64 words will not fit into a single record.

DEFINE FILE #1 = 'DIR',MIDAS,64

The user is then prompted to input field names in order, as shown in the sample dialog
below. The function FNI forms an array of these input strings. The prompt character for user
input is defined as a single dot.
Record Access: The program then defines what will occur when the user inputs the words,
"FIND" or "FIND ALL". The FIND ALL function incorporates the BASIC/VM statements
POSITION and READ.

POSITION #1, KEY FNK(I$(3)) = I$(4)

The POSITION statement tells the read pointer to find the record referenced by the key
(index subfile number), in this case FNK(IS(3)), whose value is given by the expression IS(4).
After the record is read and printed out, the pointer is told to position to the next record
referenced by the previously specified key. This accommodates the use of duplicate keys
(that is, having more than one record or entry referenced by a single key).

POSITION #1, SAME KEY

Reading record contents: Once a record is positioned to, the data in it can be READ into a
specified string variable. The READ statement places all the data in the current record into
string X$.

READ #1, X$

In this case, the specified key is given by FNK(I$(3))=I$(4), and the record associated with
this key will be read. The function then prints out the record and loops until all records
corresponding to the given key are read and returned.
The FIND function is similar io FIND ALL but only retrieves one specific record, the first
one it encounters fitting the description given by the key.
Automatic record positioning: The POSITION statement is not necessary when READing a
MIDAS file. The read pointer will automatically position to the proper record when a key
value is supplied with a READ statement.

READ #1, KEY FNK(I$(2))= I$(3),X$

Here, the key number and value are supplied and the record is positioned to and read. The
function then prints out the data in X$ and returns the user to the input function (FNI] at line
340.
Adding a new record: If the user types ADD at line 340, the program jumps to line 470 which
begins an "ADD" sequence. Data can then be added to the MIDAS data base with the ADD
statement. First, the item must be padded to the correct length, which is accomplished by
FNP$. This key information is then added to "DIR" with the ADD statement.

ADD #1, z$, KEY 0= I$(l), KEY1=I$(2),KEY2=I$(3),KEY3=I$(4)

(The subset containing KEYl through I$(4) is a "KEYLIST".)

F D R 3 0 5 8 8 _ 2 9 1 January 1980

8 FILE HANDLING

Listing all file records: The LIST function makes use of the MIDAS access statements,
REWIND, READ and POSITION, to generate a listing of all the records in the MIDAS file.
The pointer is first returned to the beginning or (upper left corner of the matrix) of the file:

REWIND #1

No key is specified, therefore, KEY 0 is assumed. The program reads the first record pointed
to and prints it out. The next record is then positioned to with the statement:

POSITION #1, SEQ

Duplicate keys: The SEQ parameter tells the pointer to position to the next sequential record
in the file. It may have the same key value as the record just read. This happens when
duplicate keys are being used. This sequential "position-then-read" routine is done until the
end of the file is reached.
Error handling: The remainder of the program handles errors, using the BASIC/VM error-
handler functions, ERR$ and ERR. See Sections 7 and 14 for details.

Running the MIDASDEMO
The MIDAS file template set up by CREATK contains no data; they are entered by the user
when the DEMO program is run. The first data requested by the program are the field
names, which correspond to the primary and secondary keys. Data items are entered in
response to the "." character, which is established by the DEMO program as the input
prompt.
In the sample terminal session below, the "ADD" function is used to add four separate
records to the data base. The entries NUM, NAME, CITY and STATE correspond to the
primary key (KEY 0), and secondary keys, KEY 1-3, respectively. The various program-
defined functions discussed earlier are then utilized.
The CTRL-C break-out at the end of the program is possible only during input mode, or when
the program is waiting for input from the terminal.

NEW OR OLD: OLD DEMO
>RUNNH
Fields: NUM,NAME,CITY,STATE
• ADD
NUM NAME CITY STATE .1 JONES BOSTON MASS
.ADD
NUM NAME CITY STATE .2 JAMES NEWTON MASS
.ADD
NUM NAME CITY STATE .3 SMITH NYC NY
.ADD
NUM NAME CITY STATE .4 AMES ORANGE NJ
.LIST
1 JONES BOSTON MASS
2 JAMES NEWION MASS
3 SMITH NYC NY
4 AMES ORANGE NJ
•FIND NAME JAMES
2 JAMES NEWTON MASS
.FIND ALL STATE MASS
1 JONES BOSTON MASS
2 JAMES NEWTON MASS

" >

1 January 1980 8 _ 3 0 F D R 3 0 5 8

FILE HANDLING 8

.FIND ALL NAME J (partial key access - finds all names starting with
' J ')

2 JAMES NEWTON MASS
1 JONES BOSTON MASS
.FIND ALL STATE N
4 AMES ORANGE NJ
3 SMITH NYC NY
. (CTRL-<: typed here)
END OF DATA AT LINE 240
>QUIT

F D R 3 0 5 8 . 8 - 3 1 1 January 1980

Arrays and matrices

" >

INTRODUCTION
Arrays and matrices are one- or two-dimensional tables of contiguous numeric or string
values. They are generally thought of in terms of rows and columns. Each array or matrix
element is represented by a variable followed by a parenthesized integer value or values,
called "subscripts". In a two-dimensional array element representation, the first subscript
represents rows, the second, columns. Thus element A(2,2) is in row 2, column 2 of array A.
If a non-integer subscript value is entered, BASIC/VM truncates it to an integer before using
it to locate the specified element.
A matrix consists of those elements in an array that are represented by non-zero subscript
values. In the figure below, array A has nine elements, while matrix A has only four. Note
that all matrix elements are represented by non-zero subscripts.
The zeroth element in any array, that is, the foremost element, is represented as (0) in a one-
dimensional array, and (0,0) in a two-dimensional array. A matrix, however, never includes
a zeroth element; the first element in a matrix is (1) or (1,1), depending on the dimensions
of the matrix. All the elements in an array are not printed if MAT PRINT is used to display
the array; only the matrix portion of the array will be displayed. Similarly, only the matrix
portion of an array will be operated on by the BASIC/VM MAT statements listed in Table
9-1.
The DIM statement dimensions an array or matrix by setting a limit on the number of
elements it contains. For example, the statement DIM A (2,2) sets up a two-dimensional
array with the following elements:

(0 .0) (0 ,1) (0 ,2)
(L O) (L I) (1 . 2) (1 , 1) (1 , 2)
(2 . 0) (2 , 1) (2 , 2) (2 , 1) (2 , 2)

A R R A Y A M A T R I X A
(all subscripts non-zero)

Matrix A consists of those elements of array A having non-zero subscripts. The dimensions
of matrix A are 2 by 2, that is, two rows by two columns. The actual dimensions of array A
are 3 by 3, or three rows by three columns.

ARRAYS

Numeric arrays
A numeric array name is a simple numeric variable. An array name followed by one or two
parenthesized values, indicates an element in the array. For example, A(5) and B9(6) name
elements in one-dimensional arrays. The values of all elements in a numeric array are
initialized to 0 at the beginning of the program in which they are defined. Numeric array
elements can be assigned values in a number of ways, including simple assignment
statements like B9(6)=12, and the INPUT, READ and DATA statements discussed in Section
5.

1 J a n u a r y 1 9 8 0 g _ - ±
FDR 3058

9 ARRAYS AND MATRICES

~ >

String arrays
A string array is named by a simple string variable. String array elements are represented
by an array name followed by one or two subscript values. For example, the following
subscripted variables represent string array elements:

A $ (5) (o n e - d i m e n s i o n a l a r r a y e l e m e n t)
B $ (1 + 1 , 3) (t w o - d i m e n s i o n a l a r r a y e l e m e n t)

All string array elements are variable length character strings; each element is initialized to
null at the beginning of program execution. Simple assignment statements, like A$(2) =
'Steve', or the INPUT, READ and DATA statements, are used to assign new values to string
array elements.

Declaring an array
Array dimensions are established in one of two ways: by a DIM statement, such as DIM
A(5); or by a MAT statement, such as MAT PRINT A, which references array A. In the
absence of a DIM statement, any referenced matrix (array) is implicitly assigned the default
dimensions of (10) or (10,10). The elements in matrix A are A(l)-A(10). The value of any
subscript must be within the range of the defined array dimensions. DIM statements may
appear anywhere in a program. Before execution begins, BASIC/VM sets up arrays
internally according to these criteria:

• If an array element, such as A(l) or A(2,3), is referenced in a program, but
the array A has not been defined in a DIM statement, it is implicitly
dimensioned to (10) or (10,10).

• If an array is defined more than once by DIM, the first dimension
statement sets its size.

Default array dimensions: The following program references an array which has not been
previously dimensioned by a DIM statement. Lines 20 and 30 assign values to two elements
in this array. All elements have a value of 0, as indicated below:

10 I Program with undefined array
20 A(3)=3 1 ASSIOJ VALUE OF 3 TO THIRD ELEMENT OF ARRAY 1
30 A(4)=4 'ASSIGN VALUE OF 4 TO ELEMENT A(4)
40 REM MATRIX AUTCMATICALY DIMENSIONED TO 10
50 MARGIN 20 1 PRINT OUT MATRIX A IN SINGLE COLUMN
60 MATPRINT A
70 END
>RUNNH
0
0
3
4
0

0
The default dimensions of array A are assumed to be 10 because the array was not defined ^
by a DIM statement.
Array examples: Below are several examples of one- and two-dimensional array and
matrices. These arrays are defined by DIM statements and are assigned values by simple
assignment statements using FOR-loops.

* >

FDR 3058 g _ 2 1 J a n u a r y l i

ARRAYS AND MATRICES 9

r

r

r

One-dimensional array:

10 DIM A(8)
20 FOR N = 0 TO
30 A(N) = N
40 PRINT A (N)
50 NEXT N
>RUNNH

0
1
2
3
4
5
6
7

Two-dimensional array: (Note that line 80 prints matrix M, not array M.)

10 DIM M (3,4)
20 FOR I = 0 TO 3
30 FOR J = 0 TO 4
40 M(I,J) = 3 * I - J+l
50 NEXT J
60 NEXT I
70 PRINT 'M'
80 MAT PRINT M
90 PRINT LIN (2); 'M'

100 FOR F = 0 TO 3
110 FOR G = 0 TO 4
120 PRINT M (F,G)
130 NEXT G
140 NEXT F
150 PRINT LIN (2); 'DONE'
>RUNNH
M
3 2 1 0
6 5 4 3
9 8 7 6

M
1
0
-1
- 2
-3
4
3
2
1
0

1 J a n u a r y 1 9 8 0 g _ 3 F D R 3 0 5 8

9 ARRAYS AND MATRICES

5
4
3
10
9
8
7
6

Two-dimensional string array:

10 DIM B$(2,2)
20 B$(1,1)=ICYNTHIA,
30 B$(1,2)='MICHELLE1
40 B$(2,1)=,SABRA'
50 B$(2,2)='SHEILA'
55 MATPRINT B$
60 END
>RUNNH
C Y N T H I A M I C H E L L E
S A B R A S H E I L A

Converting strings to arrays
A string of ASCII characters can be converted to a one-dimensional numeric array with the
CHANGE statement. The resulting array contains the decimal equivalents of the characters
in the string, including parity. Conversely, a decimal array may be changed to a string of
corresponding ASCII characters. The CHANGE statement performs both types of data
conversions, as shown in the example below. (Refer to Appendix B for the ASCII character
table.)
The following program changes the ASCII characters in string D$ to an array containing
their decimal equivalents:

10 DIM A (6)
20 D$ = 'CHANGE'
30 CHANGE D$ TO A
40 FOR I = 1 TO 6
50 PRINT A (I)
60 NEXT I

When run, the program prints:

195
200
193
206
199
197

If the array has not been previously dimensioned, the CHANGE statement automatically
dimensions the array to the length of the string. The zeroth element of the array contains the
length of the string. In the above example, A(0) is automatically set to 6, because "CHANGE"
is six characters in length.

F D R 3 0 5 8 9 - 4 i J a n u a r y 1 9 8 0

" >

"

ARRAYS AND MATRICES 9r
r

•

The following program converts the decimal values of an array lo a string of corresponding
ASCII characters:

5 A(0)=6 Unitialize A(0)
10 FOR X = 1 TO 6
20 READ A(X)
30 NEXT X
40 DATA 208, 210, 197, 211, 212, 207
50 CHANGE A TO A$
60 PRINT A$

When run. the program prints:

PRESTO

Changing string length: Changing the zeroth element of a numeric array during a CHANGE
alters the length of the resulting character string. For example, if AS="ABCDE" is converted
to its numeric array equivalent, the first array element. A(0), will be equal to 5 because the
string is five characters long. If the value of A(0) is set to 3. a CHANGE of A to AS will result
in a string of three characters: "ABC".

MATRICES

Dimensioning a matrix
Matrices, like arrays, are dimensioned by the DIM statement or are automatically defined
when referenced by a MAT (matrix) statement. An unofficially dimensioned matrix is
assigned default dimensions of (10) or (10,10) when referenced in a program. The
dimensions of a matrix can be increased or decreased by using the MAT statement followed
by new subscript values for the parameters, (dim-1. dim-2). See Table 9-1 for matrix
statement formats.

Assigning matrix element values
Matrix elements may be assigned values with the simple assignment statement, the
MATREAD - DATA statement combination, and the MATINPUT statement.
MATREAD and DATA: Matrix elements can also be assigned values with MATREAD and
DATA statements. Values are read from DATA statements with MATREAD and are
assigned to each element of the specified matrix in row-major order. (The rightmost
subscript is incremented most rapidly.) The dimensions of the matrix are first defined in a
DIM statement. Then data values are read from DATA statement(s) until each element of
the matrix is assigned a value, or until the data list is exhausted. The following example
reads fifteen numbers from consecutive DATA statements and assigns them lo matrix A:

10 MARGIN 50
20 DIM A(3,3)
30 MATREAD A
40 DATA 10,20,30,40,50,60,70
45 DATA 80,90,100,110,120,130,140,150
50 MATPRINT A
55 MARGINOFF
60 END
>RUNNH
1 0 2 0 3 0
4 0 5 0 6 0
7 0 8 0 9 0

1 J a n u a r y 1 9 8 0 9 - 5 F D R 3 0 5 8

9 ARRAYS AND MATRICES

Entering data with MATINPUT: Matrix values may be entered directly from the terminal
using the MATINPUT statement. MATINPUT and INPUT are identical except that the
values entered with MATINPUT are stored internally in matrix format. Values may be
entered with leading and/or trailing blanks, just as with INPUT. All expected values can be
entered on one line providing they are separated by delimiters.
The following program defines matrix B as a 2 by 3 matrix, with a total of six elements. The
MATINPUT statement expects six values from the terminal. Each entered value is then
assigned to an element in matrix B. MATPRINT displays all the matrix elements, putting
each in a different print zone. The MARGIN statement can be used to force MATPRINT to
display matrix data in column format. The third example below illustrates the use of MARGIN
in formatting matrix output.

5 PRINT *ASSIGN VALUES FOR MATRIX B: '
10 DIM B(2,3)
20 MATINPUT B
30 MATPRINT B
40 END
>RUNNH
ASSIGN VALUES FOR MATRIX B:
110
120
130
140
!50
160
1 0 2 0 3 0
4 0 5 0 6 0

19.0

>! All six values can be entered at once:
>RUNNH
ASSIGN VALUES FOR MATRIX B:
•10,20,30,40,50,60
1 0 2 0 3 0
4 0 5 0 6 0

Multiple matrix variables are allowed in MATINPUTand MATPRINT statements. For example:

10 dim a(2,3)
20 dim b(2,3)
30 matinput a,b
40 matprint a,b
50 end
>runnh
11,2,3,4,5,6
17,8,9,10,11,12
1
4

7
10 11 12

FDR 3058 9-6 1 July 1982

ARRAYS AND MATRICES 9r
The MATINPUT mat (*) statement is a special version of MATINPUT. It accepts one line of
input and automatically dimensions the matrix, named by mat, to the number of items input.

5 REM AUTOMATICALLY DIMENSIONS MATRIX TO NUMBER OF ITEMS INPUT
10 DIM A (2,2)
15 MATPRINT A
20 MATINPUT 'ENTER SOME VALUES FOR MATRIX A:', A(*)
30 MATPRINT A
40 MARGIN 20
45 MATPRINT A
50 END
>RUNNH
0 0
0 0

ENTER SOME VALUES FOR MATRIX A:10,20,30,40
1 0 2 0 3 0 4 0

10

1 J u l y 1 9 8 2 9 - 6 A F D R 3 0 5 8

ARRAYS AND MATRICES 9

20
30

r

r

r

On the basis of the values entered for MATINPUT*. matrix A is automatically defined as a
one-dimensional matrix containing four elements.

MATRIX OPERATIONS
Matrix operations are valid only for that part of an array defined as a matrix, that is. those
elements which have non-zero subscripts. Matrix operations include initialization, re-
dimensioning, addition, subtraction, multiplication, inversion and transposition. All matrix
operations begin with the keyword MAT and are listed in Table 9-1. All of the indicated
operations, except MAT=NULL, can be performed on numeric matrices. String matrices can
only be initialized to NULL or redimensioned with the (dim) option of the MAT statement.

Summary of matrix operations
The following table lists all available BASIC/VM matrix operations. The parameter dim
represents a numeric constant or expression defining the dimensions of a matrix; num-expr
represents a numeric expression by which a matrix may be multiplied during scalar
multiplication.

Table 9-1. Matrix Operations

Type
All elements are initialized to zero. (Matrix may
be redimensioned.)
All elements are initialized to one. (Matrix may
be redimensioned.)
All elements are initialized to zero except the
main diagonal (elements with equal subscripts)
which is all ones: identity matrix. (Matrix may
be redimensioned.)
All elements of string array are nulled. Matrix is
optionally redimensioned.
All elements of two matrices are added to or
subtracted from each other.
All elements of a matrix are multiplied by an
expression. (Scalar multiplication.)
The dimensions of one matrix are assigned to
another.
Two matrices are multiplied.
All elements are transposed.
A square matrix is inverted.
Data exchange within the program.
Data exchange between program and terminal.
Data exchange between program and external
files or devices.

Statements Used
MAT X=ZER [(dim-1 [,dim-2])]

MAT X=CON [dim-1 [,dim-2])]

MAT X=IDN [(dim-1 [,dim-2])]

MAT A$=NULL [(dim-1 [,dim-2D]

MAT X=X+Y or
MAT X=X-Y
MAT A=(num-expr) *X

MAT A=B

MAT A=X*Y
MAT X=TRN(Y)
MAT X=INV(Y)
MAT READ, CHANGE
MAT INPUT, MAT PRINT
MAT READ #, MAT WRITE ft

1 January 1980 9-7 FDR 3058

9 ARRAYS AND MATRICES

Initializing a matrix
A matrix can be assigned values with any one of four matrix functions. These matrix
functions are ZER, CON, IDN and NULL. The NULL function applies to string matrices only;
the remaining functions are used with numeric matrices.
ZER function: ZER initializes each element of the specified matrix to 0. The following
statements define a 5 by 7 matrix and initialize each element to 0:

DIM A(5,7)

MAT A = ZER

CON function: CON initializes each element of the specified matrix to 1. The following
statements define a 2 by 3 matrix and initialize each element to 1, respectively:

DIM B(2,3)
MAT B = CON

IDN function: IDN initializes the matrix to the identity matrix, in which all elements except
those on the main diagonal are 0, and the diagonal elements are 1. IDN can only be used on
a square matrix, that is, one in which the number of rows equals the number of columns. For
example:

DIM A(3,3)
MAT A = IDN

results in:

10 0
0 10
0 0 1

NULL function: NULL has the same effect on string arrays that ZER has on numeric arrays;
it initializes each element of the matrix to a null value. The matrix can also be re
dimensioned. For example:

100 DIM A$(2,2)
110 FOR 1=1 TO 2
120 FOR J=l TO 2
130 A$(I,<J) = ILARRY'
140 NEXT J
150 NEXT I
160 MATPRINT A$
170 MAT A$ =NULL(3,2)
175 PRINT 'PRINT REDIMENSIONED MATRIX'
180 MATPRINT A$
190 END
> R U N N H > ^
L A R R Y L A R R Y
L A R R Y L A R R Y

PRINT REDIMENSIONED MATRIX

F D R 3 0 5 8 9 - 8 1 J a n u a r y 1 9 8 0

ARRAYS AND MATRICES 9

r

Of course, nothing is printed because all the matrix elements have been NULLed.

Redimensioning a matrix
The matrix functions ZER, CON, NULL and IDN can also be used to change the dimension of the
matrix. By specifying subscript values after the constant, the matrix is redimensioned and the
value of each element within the matrix is set according to the constant used. The following
examples illustrate this concept using CON and ZER:

10 REM First d.Lmension matrix A
20 DIM A(3,3)
30 MATPRINT A
40 REM Redimension matrix A
50 MAT A=C0N(2 2)
60 MATPRINT A
70 END
>RUNNH
0
0
0

1
1

Setting dimensions with expressions: Dimensions do not have to be set with constants. For
example, numeric expressions can be used in setting dimensions for matrix A below:

100 DIM A(2,2)
110 MATPRINT A
120 1=3
130 J=2
140 MAT A=C0N(I,J+1)
150 PRINT 'Redimensioned matrix looks like this:'
160 MATPRINT A
>RUNNH
0 0
0 0
Redimensioned matrix looks like this:

1 1 1
1 1 1
1 1 1

STOP AT LINE 160

Assigning one matrix to another: The dimensions of a matrix can also be changed by
assigning another matrix to it. For example, the dimensions of matrix B are assigned to
matrix A:

DIM A(6,6) !Total of 36 elements in matrix
DIM B(5,4) "Total of 20 elements in matrix
MAT A = B 1A is a 5 by 4 matrix of 20 elements

J J u l y 1 9 8 2 9 - 9 F D R 3 0 5 8

9 ARRAYS AND MATRICES

Matrix addition The elements of two numeric matrices may be added together, and the
resulting values assigned to elements in a third matrix. The example below adds the
elements of matrix B to those of matrix C and stores the results in matrix A (called the target
matrix):

.MAT A = B + C

The source matrices (B and C) must have the same dimensions. The dimensions of target
matrix (A) are converted to those of matrices B and C.
Figure 9-1 diagrams the addition of two matrices to produce values in the corresponding
elements of a third matrix.

One-d mensional Matrices:
MAT C = A + B

24 19
37 30
34 12 22

Two-d mensional Matrices:
MAT C + B
26 22 6 14 20 3 12 2 3
20 18 26 19 4 7 1 14 19
45 28 13 8 23 10 37 5 3

Figure 9-1. Matrix Addition

Matrix subtraction Elements of one matrix may be subtracted from elements of another
matrix, providing that both matrices are of the same dimensions. The resulting values can
then be assigned to the elements of a third matrix, also of the same dimensions. In the
expression:

MAT A = B - C

the elements of matrix A are set equal to the values resulting from the subtraction of
elements in matrix C from those of matrix B. All three matrices have the same dimensions.

Matrix multiplication A matrix can be multiplied by a numeric expression, or by another
matrix. Both types of multiplications and their restrictions are discussed below.
Scalar'multiplication: A matrix may be multiplied by a numeric scalar expression and the
results stored in a second, or target, matrix. This is known as "scalar" multiplication.
In the following example, each element of matrix Y is multiplied by 5 and the resulting
values are assigned to matrix A. The dimensions of matrix Y then become those of matrix A.
Multiplication of two matrices: To multiply two matrices, both must be two-dimensional and
the number of columns in the first matrix must equal the number of rows in the second
matrix. The result is a third matrix with the same number of rows as the first matrix, and the
same number of columns as the second matrix.

FDR 3058 9-10 1 January 1980

■ "

ARRAYS AND MATRICES 9

r
r

The example below multiplies matrix B and matrix C to produce matrix A with dimensions
of 2 bv 4.

10 dim B(2,3)
20 matinput B
30 print
40 print "JHIS IS MATRIX B1
50 matprint B
60 dim C(3,4)
70 matinput C
80 print
90 print 'THIS IS MATRIX C*
100 matprint C
110 mat A=B*C
120 rem Matrix A is a 2-by-4 matrix
130 print
140 print "THIS IS MATRIX A'
150 matprint A
160 end
>runnh
11,2,3,4,5,6

THIS IS MATRIX
1
4

11,2,3,4,5,6,7,8,9,10,11,12

THIS IS MATRIX C
1 2
5 6
9 1 0

THIS IS MATRIX A
3 8 4 4
8 3 9 8

11

50
113

12

56
128

Each element in matrix A is the result of multiplying the elements of matrix B by the
elements of matrix C in the following manner:

1. Multiply each element in row 1 of matrix B. by each element in column
1 of matrix C.

2. Add the results to obtain the value of the element in matrix A, row 1,
column 1.

3. Continue the pattern by multiplying row 1 and column 2 to produce element
A(l,2); row 1 and column 3 to produce A(l,3); row 2 and column 1 to produce
A(2,l); row 2 and column 2 to produce element A(2,2); row 'I and column 3 to
produce element A(2.3).

1 luly 1982 9-11 FDR 3058

9 ARRAYS AND MATRICES

A = B*C
A(l,l) =(1*1) + (2*5) +(3*9)
A(l,l) = 1+10 + 27
The first element in matrix A = 38

Restriction: The current values of the target matrix may not be used as part of the
multiplication expression:

MAT A = A*B

is an ILLEGAL expression in BASIC/VM.

Inverting a matrix
Matrix inversion is accomplished by using the INV function. A matrix can be inverted only
if it is square and its determinant, (DET), is not zero. Multiplying a matrix by its inverse
yields the identity matrix. The determinant of a matrix is determined by the DET function
(a numeric system function - see Section 10). More information on DET and other matrix
operations can be found in the following references, or in any other Linear Algebra text:

Thomas, George B., Calculus and Analytic Geometry. 4th edition.
Addison-Wesley, Reading, Mass., 1968
Zuckerberg, Myarn L, Linear Algebra, Charles E. Merrill. Pub., Columbus,
Ohio. 1972

Both matrices are two-dimensional. The dimensions of matrix B are set to the reverse of
those of matrix A. For example, if MAT A is (2.3). MAT B will become (3.2).
Restriction: It is not legal to assign the transpose of a matrix to itself. For example, the
statement MAT A=TRN(A) is illegal.

F D R 3 0 5 8 9 - 1 2 1 J a n u a r y 1 9 8 0

The following program segment demonstrates the use of the inverse and determinant
functions:

60 MAT READ A
70 IF DET A = 0 THEN PRINT "CAN'T INVERT" ELSE PRINT "CAN INVERT"
80 IF DET A <> 0 THEN MAT C= B*INV(A)
90 DATA 1,2,3,1

Transposing a matrix
Every two-dimensional matrix has a transpose. This is determined by rolling the matrix on
the main diagonal. If matrix A looks like this:

4 2
3 1

its transpose looks like this:
4 3
2 1

and can be assigned to another matrix with the statement:

MAT B = TRN(A)

ARRAYS AND MATRICES 9

-

-

Using transposition: If a company sells four products and has three customers buying
varying amounts of each product, the quantities can be set up in a 3 by 4 matrix (A). See
Figure 9-2. The cost of each product can be set up in a 1 by 4 matrix (B). To determine the
amount owed by each customer, matrix A must be multiplied by matrix B. Since you cannot
multiply a matrix of dimension (3,4) by a matrix of dimension (1.4). you must transpose B.
This will make the number of columns in matrix A equal to the number of rows in matrix B.
This can be expressed in one of several ways, including:

C=A*TRN(B)

o r

D=TRN(B)
C=A*D

In either case, the final multiplication performed is:

C=(3,4)* (4 , l)
and the result is:

C=(3, l)

Matrix I/O to data files
Matrices can be written to and read from data files with the MAT READ and MAT WRITE
statements. Only the file handling statements which deal with matrix I/O are presented
here. Other file handling operations are dealt with in Section 8 and Appendix E.

1 J u l y 1 9 8 2 9 - 1 2 A FDR 3058

ARRAYS AND MATRICES 9

Customer 1
Customer 2
Customer 3

Cost/item

Customer 1
Owes
15.60

Figure 9-2. Matrix Transposition

Matrix A

1 0 0 1 0 0
0 0

5 0 1 0 0

6 0 0
3 0 0 1 0
1 0 0 1 0 0

nuts bolts nails screws

Matrix B
. 1 0 . 0 5

nuts bolts
. 0 1 . 0 2

nails screws

C = A * TRN(B)
= (3x4) * (4x1)
= (3x1)

Matrix C
Customer 2
Owes
3.20

Customer 3
Owes
13.00

1 January 1980 9-13 FDR 3058

9 ARRAYS AND MATRICES

" >

Writing a matrix to a file: Matrices are written to a data file with the MAT WRITE #unit
statement. First, the matrix is defined with a DIM statement. Values are then assigned to
each matrix element. The entire matrix is then written to the opened data file with a single
MAT WRITE statement. For example:

10 DEFINE FILE #1 = 'NUMBERS', ASCSEP
20 DIM A(3)
30 A(l)=10
40 A(2)=20
50 A(3)=30
60 MAT WRITE #1, A
70 REWIND #1
80 MAT READ #1, A
90 MATPRINT A
100 CLOSE #1
>RUNNH
1 0 2 0 3 0

Reading from a file to a matrix: Values written to a file with MAT WRITE can be retrieved
with any of the READ statements covered in Section 8. The contents of a file record can also
be read into one or more matrices with the MAT READ or MAT READ* statements, as
shown in the program above. The matrix or matrices to be filled must first be defined by a
DIM statement. Data is then read from the indicated file until all elements of the matrix or
matrices have been assigned values.
The following example illustrates the use of MAT READ and MAT WRITE with three types
of ASCII files. Three values are written to each file type using WRITE# statements. Matrix
A is defined as a one-dimensional matrix of two elements. A MAT READ statement retrieves
values from each of the files to fill the matrix. In this example, MAT READ reads only two
values from each file, because matrix A has only two elements.

5 ON ERROR GOTO 200
10 DEFINE FILE #1 = 'MAT'
20 DEFINE FILE #2 = 'MAT2', ASCSEP
30 DEFINE FILE #3 = 'ASCDA', ASCDA
40 WRITE #1, 20, ',', 20, ',', 20
50 WRITE #2, 20,20,20
60 WRITE #3, 20,20,20
70 REWIND #1,2,3
80 DIM A(2)
90 PRINT 'READ MAT'
100 MAT READ #1, A
110 MAT PRINT A
120 MAT READ #2, A
130 PRINT 'READ MAT2'
140 PRINT
150 MAT PRINT A
160 MAT READ #3, A
170 PRINT 'READ ASCDA'
1 8 0 M A T P R I N T A ^ ^
190 REWIND #1,2,3
200 END
>RUNNH
READ MAT
2 0 2 0

FDR 3058
n 1 4 1 J a n u a r y 1 9 8 0

ARRAYS AND MATRICES 9

"■

~

READ MAT2

2 0 2 0

READ ASCDA
2 0 2 0

Reading from default ASCII files: Notice that the default ASCII file. -MAT", is handled
somewhat differently from other ASCII file types. Literal delimiters must be included in the
data written to the file: otherwise, the contents of the record will be inpterpreted as a single
string item by the MAT READ statement. See line 40 in the program above. Because of these
properties, default ASCII files are not as well-suited to matrix I/O as are other file types.
See Section 8 and Appendix E for more details.
MAT READ* statement: The MAT READ* statement works just like the READ* statement
introduced in Section 8. The read pointer remains positioned at the current record after a
MAT READ* is executed rather than pre-positioning to the next record. This allows the next
MAT READ* statement to continue reading data from the current record. For example:

10 DEFINE FILE #1 = 'T.MATREAD', ASCSEP
20 WRITE #1, 10,10,10,10,10
30 WRITE #1, 20, 20,20,20,20
40 REWIND #1
50 DIM A(3)
60 MATREAD* #1,A
70 PRINT 'FIRST MATREAD*1
80 MATPRINT A
90 MATREAD* #1, A
100 PRINT 'SECOND MATREAD*1
110 MATPRINT A
120 REWIND #1
130 MATREAD #1, A
140 PRINT 'FIRST MATREAD*
150 MATPRINT A
160 MATREAD #1, A
170 PRINT 'SECOND MATREAD'
180 MATPRINT A
190 END
>RUNNH
FIRST MATREAD*
1 0 1 0 1 0

SECOND MATREAD*
1 0 1 0 2 0

FIRST MATREAD
1 0 1 0 1 0

SECOND MATREAD
2 0 2 0 2 0

This program clearly shows the difference between MAT READ and MAT READ*. The first
two matrices printed contain file values read with MAT READ* statements. The third and
fourth matrices contain values read from the file with MAT READ statements.

1 J u l y 1 9 8 2 9 - 1 5 F D R 3 0 5 8

Functions

INTRODUCTION
Most arithmetic operations can be simplified by using pre-defined numeric functions to
handle routine calculations such as computing square roots and logarithms. String data
handling can also be facilitated by functions designed specifically for manipulating strings.
BASIC/VM provides both numeric and stringsystem functions to perform operations like
calculating sine and cosine, generating random numbers, and converting a string of digits to
its corresponding numeric value. In addition to system provided functions, users can define
their own functions to perform special routines within a program. The functions available in
BASIC/VM are:

1. Numeric system functions
2. String system functions
3. Numeric and string user-defined functions

This section lists all the currently defined system functions, (both numeric and string), and
provides information on defining and implementing user-defined functions of both types. A
detailed discussion of call-by-value and call-by-reference functions is also included.

NUMERIC SYSTEM FUNCTIONS
A numeric function is identified by a three- or four-letter name, such as TAN, followed by
one or more parameters enclosed in parentheses. If more than one parameter is required,
they are separated by commas. Numeric functions operate on numeric items or expressions.
The result of a function operation is a single numeric value. Therefore, a function can be
used anywhere in an expression where a numeric constant or variable can be used.
The following table lists the library of BASIC/VM numeric system functions. In all of the
descriptions. X represents a numeric expression, and Y and Z represent integers.

Using numeric system functions
Most of the functions in Table 10-1 perform familiar mathematical operations. Below are
some of the ones most frequently used in BASIC programming.
The INT function: The INT function performs integer truncation and can be used to convert
a decimal number to an integer. For example:

INT(.99989) = 0

INT can also be used to round any numeric value to a specific number of decimal places. For
example, to round the value of Xl to one decimal place, use the formula:

INT (10 * XI + .5) /10

For example:

INT(2.9 + .5) = 3

i J u l y 1 9 8 2 1 0 - 1 F D R 3 0 5 8

10 NUMERIC AND STRING FUNCTIONS

Table 10-1 Numeric System Functions
ABS(X) Computes the absolute value of X.
ACS(X) Computes the principal arccosine of X. The result

is in radians in the range of 0 to it.
Argument must be in the range: -1 <X < 1.

ASN(X) Computes the principal arcsine of X. The result
is in radians in the range of -ir/'l to ir/2.
Argument must be in range: -1 < X < 1.

ATN(X) Computes the principal arctangent of X radians.
Returns the angle whose tangent equals X. Argument,
in radians, is in the range of -tt/2 to w/2.

COS{X) Computes the cosine of X. The argument must be in
radians. The result is in the range -1 to +1.

COSH(X) Computes the hyperbolic cosine of X, defined
as (EXP(X)+EXP(-X))/2). The argument must
be in radians.

DEG(X) Computes the number of degrees in X radians,
|(180/7r)*X)|. The result is in degrees.

DET(X) Computes the determinant of matrix X. If DET(X)
unequal to 0, matrix X has an inverse.

ENT(X) Computes the greatest integer that is less than or
equal to X.

ERL Returns the statement number of the line which
caused an error.

ERR Returns the error code number of the last error.
EXP(X) Computes the exponential of X, defined as

"e raised to the X power". The value
of e is: 2.71828...

I N T (X) P e r f o r m s i n t e g e r t r u n c a t i o n .
If X > 0, returns the greatest integer < X.
If X < 0, returns the least integer > —X.

LIN#(X) In ASCLN files, returns the line number
of the current record on unit X. For BINDA
files, returns the current record positioned to
in the file on unit X. Top of file is record 0.

LOG(X) Computes the natural logarithm (base e) of X.
NUM Returns the actual number of entries supplied

to the MATINPUT M(*) and MATINPUT M$(*) statements.
Matrix M is one-dimensional.

PI Computes the value of t t (3.14159).
RAD(X) Computes the number of radians in X degrees.

Formula is: X*(ir/180).
RND[(X)] If X > 0, uses X to initialize the "random" number

generator and returns X as the function value.
If X < 0, uses X to initialize the random number
generator, and returns a value in the range zero
to one. If X=0, returns a random number
between 0 and 1.RANDOMIZE used to reset generator
to new starting point in random number series.

FDR 3058 10-2 1 January 1980

NUMERIC AND STRING FUNCTIONS 10

r

r

Table 10-1. (cont'd)
SGN(X) Computes a value based on the sign of X as follows:

X <0 SGN(X)=-1
X=0 SGN(X)=0
X>0 SGN(X)=1

SIN(X) Computes the sine of X. The argument must be in
radians. The result is in the range -1 to +1.

SINH(X) Computes the hyperbolic sine of X defined as
(EXP(X)-EXP(-X))/2. Argument must be in radians.

SQR(X) Computes the positive square root of X.
TAN(X) Computes the tangent of X. The argument

must be in radians.
TANH(X) Computes the hyperbolic tangent of X defined as

|(EXP(X)-EXP(-X)]/|EXP(X)+EXP(-X)|).
The argument must be in radians.

To round Xl to two decimal places, use the following formula:

INT (100 * XI + .5) /100

For example:

INT(100 * 39.456 + .5)/100 = 39.46

The random number generator: The RND function generates a series of pseudo-random
numbers. Given identical starting conditions, the number "randomly" chosen as the starting
point will be the same each time the program is run. The range of "random" numbers
returned depends on the value supplied for X. RND(O) initializes the number generator and
returns a result in the range of 0 to 1 (exclusive). RND(X), where X > 0, returns the function
value of X: RND(—X) returns a result in the range of 0 to 1.
The following program yields ten random integers of three digits or less. The INT function
is used to convert the very small decimal values yielded by the RND function to integers.

10 FOR 1=1 TO 10
30 L=RND(0)
35 L1=INT(L*1000)
40 PRINT LI
50 NEXT I
60 END
>RUNNH
352
301
216
173
676
85
7
858
668
873

1 July 1982 10-3 FDR 3058

10 NUMERIC AND STRING FUNCTIONS

The RANDOMIZE statement: To guarantee a more "random" set of numbers, include a
RANDOMIZE statement prior to the occurrence of the RND function in the program.
RANDOMIZE initializes the random number generator to a new and unpredictable starting
location in the number series each time it is used. RND(O) and RANDOMIZE are equivalent
in function.
The following example shows how RANDOMIZE works in program that uses the random
number generator. The first set of program executions illustrates what often happens when
the number generator is reset to the same point in the series during program execution.

10 PRINT 'RND(0) 1S*:RND(0)
20 X=l
30 PRINT 'RND(l) IS':RND(X)
40 X=0
50 PRINT 'RND(0) IS':RND(X)
60 END
>! First run:
>RUNNH
RND(0) IS .07571411132813
RND(l) IS 1
RND(0) IS .7112731933594
>!Second run:
>RUNNH
RND(0) IS .9403991699219
RND(l) IS 1
RND(0) IS .7112731933594
>!Third run:
>RUNNH
RND(0) IS .3080444335938
RND(l) IS 1
RND(0) IS .7112731933594

When the RANDOMIZE statement is inserted after line 40, the following results are
observed:

RND(0) IS .7257080078125
RND(l) IS 1
RND(0) IS .9139404296875
>RUNNH
RND(0) IS .1993103027344
RND(l) IS 1
RND(0) IS .3198852539063
>RUNNH
RND(0) IS .6022338867188

Observe that all the values returned for RND(O) are different after the RANDOMIZE
statement is added to the program.

More system functions
Most of the numeric functions in the BASIC/VM library are easy to use and require little or
no explanation. Restrictions on the argument values supplied to these functions are noted in
Table 10-1.
Some common uses for these numeric functions are: calculating the number of radians in a
given angle (RAD), and calculating the sine (SIN), cosine (COS) and tangent (TAN) of an __
angle.

FDR 3058 1 0 - 4 1 J a n u a r y 1 9 8 0

NUMERIC AND STRING FUNCTIONS 10

r
r

r

"

r
r

10 REM THIS PROGAM CALCULATES THE SIN,COS,TAN
20 REM OF AN ANGLE
30 INPUT 'HOW MANY DEGREES IN ANGLE A?', X
35 PRINT
40 PRINT 'ANGLE A IS ':X:'DEGREES'
50 PRINT
60 Y=RAD(X)
70 PRINT 'RADIANS IN ANGLE A:':Y
80 X1=SIN(Y)
90 X2=COS(Y)
100 X3=TAN(Y)
110 PRINT
120 PRINT 'SIN OF A', 'COS OF A', 'TAN OF A'
130 PRINT
140 PRINT X1,X2,X3
150 PRINT
160 END
>RUNNH
HOW MANY DEGREES IN ANGLE A?45

ANGLE A IS 45 DEGREES

RADIANS IN ANGLE A: .7853981633975

S I N O F A C O S O F A T A N O F A

. 7 0 7 1 0 6 7 8 11 8 6 5 . 7 0 7 1 0 6 7 8 11 8 6 5 1

The next program uses several other numeric functions like ABS. EXP, SQR and LOG to find
the absolute value, exponential representation, square root, and logarithm of several
numbers:

10 REM THIS PROGRAM USES: ABS, EXP, LOG, SQR
15 !
20 INPUT 'ENTER THREE NUMERIC VALUES:', A,B,C
30 Y = SQR(A+B+C)
35 PRINT 'THE VALUE OF EXPRESSION Y :':Y
40 PRINT
45 PRINT 'THE ABSOLUTE VALUE OF Y IS:':ABS(Y)
50 PRINT
55 PRINT 'THE SIGN OF Y IS:':SGN(Y)
60 PRINT
65 PRINT 'LOG1, 'EXP', 'SQR'
70 PRINT
72 REM USE INTEGER VALUES OF A AND B
75 A=ABS(A)
80 B=ABS(B)
85 PRINT LOG(A), EXP(A), SQR (A)
90 PRINT
95 PRINT LOG(B), EXP(3), SQR(B)
100 END
>RUNNH
ENTER THREE NUMERIC VALUES:123,45.6,100.89
THE VALUE OF EXPRESSION Y : 16.4161505841

1 J a n u a r y 1 9 8 0 1 0 - 5 F D R 3 0 5 8

10 NUMERIC AND STRING FUNCTIONS

THE ABSOLUTE VALUE OF Y IS: 16.4161505841

THE SIGN OF Y IS: 1

L O G E X P S Q R

4.812184355372 2 .619517318744E+53 11 .09053650641

3.81990771652 6.365439207171E+19 6.752777206454

ACS and ASN restrictions: The arccosine and arcsecant functions require the supplied
argument to be in the range of -1 to +1. If the argument is out of range, an error message
occurs:

5 ! ARG FOR ACS AND ASN MUST BE -1<=X<=1
10 X=2
20 X2=l
30 X3=-l
40 X4=0
50 PRINT "ACS' , 'ASN'
60 PRINT
70 PRINT ACS(X2) , ASN(X2)
80 PRINT ACS(X3), ASN(X3)
90 PRINT ACS(X4), ASN(X4)
100 PRINT ACS(X), ASN(X)
110 END
>RUNNH
A C S A S N

0 1 . 5 7 0 7 9 6 3 2 6 7 9 5
3.14159265359 -1 .570796326795
1 . 5 7 0 7 9 6 3 2 6 7 9 5 0
ASN,ACS - ARGUMENT RANGE ERROR AT LINE 100

STRING SYSTEM FUNCTIONS
BASIC/VM provides a substantial library of string functions, enabling the programmer to
manipulate strings in a variety of ways. String functions are used to obtain information
about, or to operate on, a string or portions of a string. For example, the function
SUB(X$,Y,Z), returns a substring, beginning with character Y through character Z, of a
larger string, X$. String functions, like STR$(X), can also convert a numeric item to its
corresponding string representation. They can also convert the string representation of a
number to the numeric value it represents, for instance. VAL(X$), where X$='12,456.34'.
A string function is identified by a three to five letter name followed by one or more
parameters enclosed in parentheses. Parameters can be numeric or string items depending
on the type of operation the function performs.
'Iable 10-2 alphabetically lists the string functions provided by BASIC/VM. In all descriptions,
X, Y and Z represent any numeric expressions, and X$ and Y$ represent a string expression.

Using string functions
Some of the string functions listed in Table 10-2 are discussed in the following paragraphs.
Several examples are included to illustrate the properties of these functions.

FDR 3058 10-6 1 July 1982

NUMERIC AND STRING FUNCTIONS 10

Table 10-2 String System Functions

CHAR(X)

CODE(X$)

CVT$$(X$,Y)

DATES
INDEX (X$, Y$ [,Z])

LEFT(X$,Y)
TIMES
MID(X$,Y,Z)
LEN(X$)
RIGHT(XS.Y)

STR$(X)
SUB (XS, Y [,Z])

VAL (XS l,Y])

Returns the character whose ASCII code is X. X is in the
range 128-255.
Computes the decimal ASCII code of the first character
of X$. Codes are listed in Appendix B. Note: the code of
a null string is —1.
Reformats XS according to the mask Y. (Masks are listed
in Table 10-3).
Returns the date as YYMMDD.
Computes the starting position of YS in X$,optionally
beginning at character Z.
Returns leftmost Y characters of X$.
Returns the time as HHMMSSFFF. (FFF is milliseconds)
Returns Z characters of XS starting at position Y.
Returns the length (number of characters) of string XS.
Returns rightmost characters of X$ beginning with char
acter number Y.
Returns the string representation of the number X.
Returns a substring composed of characters in positions
Y through Z of string XS. If Z is not specified, the result
is a one character substring consisting of character Y of
string XS.
Converts a string, XS, to the numeric value it represents.
Y will have the conversion status: 0=successful, 1=
unsuccessful. If Y is not used and the operation is
unsuccessful, a run-time error occurs.

r

r

Case conversions: The CVTSS function permits both upper-to-lower and lower-to upper case
conversions for string constants. The appropriate masks for conversion are listed in Table
10-3. Both types of case conversion can be performed simultaneously on a string containing
upper- and lower-case letters. For example:

If X$='Big Deal':

CVT$$(X$,32): returns 'BIG DEAL'

CVT$$(X$,256): returns 'big deal'

CVT$$(X$,256+32): returns 'bIG dEAL'

The last example shows how masks can be combined additively to perform both conversion
operations at once.
VAL and STR: The functions STR and VAL ignore leading and trailing blanks in the
arguments supplied them. The program below illustrates this property.

5 REM No leading or trailing blanks
6 REM output in results of VAL or STR functions

1 July 1982 10-7 FDR 3058

10 NUMERIC AND STRING FUNCTIONS

IS':STR$(X)

IS:':VAL(X$).

10 X=.456789
20 PRINT 'STR$(X)
30 X$=' 123.45
40 PRINT 'VAL(X$)
50 PRINT
60 Y$='$123.45'
70 PRINT VAL(Y$)
80 ! NON-NUMERIC CHARACTERS MAY NOT BE INCLUDED IN STRING Y$
90 END
>RUNNH
STR$(X) IS .456789
VAL(X$) IS: 123.45

VAL ARG NOT NUMERIC AT LINE 70

Table 10-3. Masks For CVTSS
M a s k F u n c t i o n
1 Forces parity bit off.
2 Discards all spaces.
4 Discards .NUL. ,.NL. ,.FF. ,.CR. ,.ESC.
8 Discards leading spaces.
16 Reduces multiple spaces to one space.
32 Converts lower case to upper case.
64 Converts (to (and j to).
128 Discards trailing spaces.
256 Converts upper case to lower case.
(Masks can be combined additively.;

Other string functions: The following example uses the LEN. SUB, RIGHT and other string
system functions to manipulate a given string:

70 PRINT
80 PRINT 'Position of K in string:':INDEX(X$,'K',1)
90 PRINT
100 B$ = SUB(X$,21,28)
110 PRINT 'Substring in positions 21-28 is:':B$
120 PRINT
130 PRINT 'Rightmost characters B$:':RIGHT(B$, 3)
140 PRINT
150 PRINT 'ASCII code of letter H:': CODE('H')
160 PRINT
170 REM Convert HUSBAND to lower-case letters:
180 PRINT 'Converted form of string B$:':CVT$$(B$,256)
190 END
10 REM Using string functions
20 X$='SOMEBODY KILLED HER HUSBAND'

FDR 3058 10-8 1 January 1980

NUMERIC AND STRING FUNCTIONS 10

r

-

160 PRINT
170 REM Convert HUSBAND to lower-case letters:
180 PRINT 'Converted form of string B$:':CVT$$(B$,256)
190 END

When run, the program results in the following output:

String X$ is: SOMEBODY KILLED HER HUSBAND

Length of string X$: 27

Position of K in string: 10

Substring in positions 21-28 is: HUSBAND

Rightmost characters B$: SBAND

ASCII code of letter H: 200

Converted form of string B$: husband

USER-DEFINED FUNCTIONS
In some programs it is necessary to execute the same sequence of statements or
mathematical operations in several different places. BASIC/VM allows you to define your
own functions and use them just like system functions. These functions can be kept in
separate files and CHAINed to or LOADed into other programs as needed.

Numeric user-defined functions
The name of a user-defined numeric function consists of the letters FN followed by a letter
or a letter and a digit as shown below:

FNA or FNA7
A reference to a user-defined function consists of the name of the function followed by a
parenthesized argument expression. A function must be defined by a DEF statement. This
definition must occur prior where the function is called or referenced in the program. For
example:

DEF FNA (X2) = 3.14 * X2+2

A user-defined function reference may be included as an operand in an expression such as:

LET Al = 3.14/FNA(X1)

The argument of a user-defined numeric function may be a numeric or string expression.
The expression is evaluated, and then the value of the expression is substituted for the
argument in the function definition. For example:

LET Al = 3.14 * FNA (XI + COS(B))

A user function may also be longer than one line. After the last line of the function
definition, use the FNEND statement to indicate the end of the function definition.

1 J u n e 1 9 8 1 1 0 - 9 F D R 3 0 5 8

10 NUMERIC AND STRING FUNCTIONS

100 DEF FNA (I)
110 IF 1=0 THEN FNA=-1 ELSE FNA = 1*1+1
120 FNEND

When program execution begins, the function definition is ignored until the function is
referenced. Each time it is referenced, program control returns to the lines which defined
the function.

String user-defined functions
The name of a string user-defined function consists of the letters FN followed by a simple
string variable, as shown below:

FNA$ or FNA7$
A user-defined function must be defined by a DEF statement. If the definition is longer than
one line, the last line must be FNEND, indicating termination of the definition. When
program execution begins, the function definition is ignored until the function is referenced.
Each time it is referenced, program control is transferred to the lines which defined the
function. For example:

10 REM A PROGRAM WITH SUBROUTINES
2 0 R E M A N D S T R I N G F U N C T I O N S ^
30 DEF FNA$ (X$, Y$)
40 FNA$=X$
50 IF X$>Y$ THEN FNA$=Y$
60 FNEND
70 INPUT A

100 IF A=l THEN 1000

150 X$=FNA$(B$,C$)+D$

1000 PRINT 'A EQUALS ONE'

2000 GOSUB 5000

2500 B$=FNA$(X$,Y$)+B$
3000 GOTO 100

5000 Z$=FNA$(X$,Y$)+C$
5010 PRINT 'LINE 5010'

6000 RETURN

F D R 3 0 5 8 1 0 - 1 0 1 J u n e 1 9 8 1

NUMERIC AND STRING FUNCTIONS 10

r

r

Program control hinges on the value for A entered at line 70. Assuming A=l, control jumps
from line 100 to line 1000. At line 2000, control transfers to line 5000. When the function FNA$
is referenced in line 2500, control transfers to lines 30, which begins the function definition
of A$. When line 60 is reached, control then returns to continue evaluation of the expression
which contained the function reference (line 5000).
User-defined string functions may also be used in conjunction with system functions:

DEF FNF$ (A,B,C) = LEFT (STR$ (A+B+C) ,5)

Here, both the string functions LEFT and STR$ are employed in the definition of the
function FNF$.

Defining functions
A function in BASIC/VM is defined with a parameter; for example, in the statement: DEF
FNA(X), X is the parameter. The parameter identifies a variable or an array, and is
sometimes referred to as a "dummy" variable.
A function is called in a program by an expression consisting of the function name, (for
example, FNA) followed by a parenthesized argument or set of arguments.

DEF FNA(X) X is a parameter of function FNA.
x=5 X is a dummy variable set equal to 5.
FNEND Denotes end of function.

Y=10 Y is an external program variable.
Z=FNA(Y) This expression calls function FNA;

Y is argument which shares a value
with dummy variable X.

Call-by-reference vs. call-by-value
Generally, there are two ways in which an argument can reference or set parameters in the
function it calls: by value or by reference. This relationship between arguments and
parameters determines whether the function is termed call-by-reference or call-by-value.
This, in turn, is dependent upon the language in which the function is being used. In
BASIC/VM, functions are call-by-reference.
In call-by-reference functions, arguments set parameters by reference. When a parameter is
set by reference, every subsequent reference to that parameter actually becomes a
reference to the storage location (slot where the value of the variable is stored in memory),
of the argument that set it when the function was called. In other words, every assignment
of a value to the parameter is in effect an assignment of the same value to the argument that
set the parameter. (The argument itself is essentially substituted for the parameter in the
function.)
In the case of call-by-value, however, the value of the argument is actually copied to the
storage location of the parameter called by the argument. Assignment of a value to the
parameter effectively results in the value being placed in the parameter's storage location.
For example, the previous function call (above) will produce two different end results for Y
depending on whether the parameter X is called by reference or called by value.

C a l l M e t h o d E n d R e s u l t
1 . C a l l - b y - r e f e r e n c e Y = 5
2 . C a l l - b y - v a l u e Y = 1 0

1 J a n u a r y 1 9 8 0 1 0 - 1 1
FDR 3058

10 NUMERIC AND STRING FUNCTIONS

In the first case, argument Y is essentially substituted for parameter X. Every subsequent
reference to parameter X actually becomes a reference to the storage location of argument
Y. Each assignment of a value to X is in effect an assignment of the same value to Y. Thus
Y is passed through the function and returns a new value (5) to Y's storage location. The
argument Y now has a new value in the external program.
Call-by-reference functions obviously change the value of an argument passed through
them. This fact should be noted so that strange results emanating from a program containing
user-defined functions do not unduly alarm the programmer.
In the call-by-value case, the argument Y passes only its value (10) to the dummy variable
X. It does not itself pass through the function FNA. At the end of the pass, Y remains
unchanged because the parameter X does not return a value to argument Y's storage
location. In this example, Y itself remains external to the function and thus retains its
original value of 10. It can be inferred that arguments cannot return values from a function
pass in call-by-value systems.

Forcing call-by-value
It is possible to force an argument to set a parameter by value in a call-by-reference system,
such as BASIC/VM. The parameter in the function definition is modified to create a
temporary value inside the function which will be passed through with no affect on the
calling argument's original value.

Forced
Call-by-Value
A = FNA(X+0)

1) X is loaded into the
accumulator.

2) 0 is added to it.
3) The result is stored in a

temporary storage location
T t .

4) Call FNA.

Call-by-Reference
A = FNA(X)

1) Call FNA.

2) Argument pointer references X.
3) The result is stored in A.

4) The arguments' storage location
is updated. There is a direct
correlation between the argument
parameter X, no local value
for X is created.

5) The argument pointer
references T1 and the
function operates on value
int l .

6) The value is then stored in A.
7) The arguments' storage

location is not updated
because the storage location
for (X+0) is unchanged;
the argument pointer references
T1 ONLY and is local to
the function.

FDR 3058 10-12 1 January 1980

NUMERIC AND STRING FUNCTIONS 10

*

r

r

The following program is an example of a call-by-reference function:

100 DEF FNA (X)
110 Y=X*X
120 X=Y+1
130 FNA = Y
140 FNEND
150 X=l
160 Y=2
170 Z=3
180 PRINT 'X': 'Y': 'Z': 'FNA(Z)', 'X': 'Y': 'Z'
190 PRINT X: Y: Z: FNA(Z), X: Y: Z
200 END

In this program, the following occurs:
1. The function of X is defined in lines 100-140. Since X is a dummy

parameter, changing X in the function definition does not change the
actual value of X.

2. Line 110 changes the variable Y to equal X2.
3. Line 120 changes the argument which corresponds to the parameter X.
4. Line 130 sets the value of the function to Y.
5. Line 180 references the function by using the argument Z which is passed

to parameter X. Therefore, when X changes. Z is also changing.
The resulting output is:

X Y Z F N A (Z) X Y Z
1 2 3 9 1 9 1 0

USING USER-DEFINED FUNCTIONS
There are many ways in which user-defined functions can make BASIC/VM programming
easier and more efficient. The remainder of this section provides additional information
regarding the implementation of user-defined functions in BASIC/VM. In particular, the
following topics are discussed:

• Function definition and program control
• Avoiding function-I/O interaction
• "Local" variables and arrays: the LOCAL statement
• Enhancing modular programming
• Simple cursor-positioning (for CRT's)

Function definition and program control
The following program demonstrates how program control can be directed by using
functions and subroutines. The function FNA is used in association with a "subroutine" that
begins in line 5000. Remember that a function definition must always precede the program
statement that calls or references it.

10 REM A PROGRAM WITH SUBROUTINES
20 REM AND FUNCTIONS
30 DEF FNA (X)
40 IF X=0 THEN FNA=-1 ELSE FNA = X*X+J
60 FNEND

1 J u l y 1 9 8 2 1 0 - 1 3
FDR 3058

10 NUMERIC AND STRING FUNCTIONS

70 INPUT A

100 IF A=l THEN 1000

150 X=FNA(3)

1000 PRINT 'A EQUALS ONE'

2000 GOSUB 5000
2010

2500 Y=FNA(G)
3000 GOTO 100

5000 Z=FNA(i;
5010

6000 RETURN

Program executions begins at line 70. Assuming A=l, control jumps from line 100 to line 1000.
At line 2000, control transfers to line 5000. When the function is referenced (in line 5000), -~
control transfers to lines 30 through 60 where the function is defined. Control then returns
to line 5000 for the assignment and continues sequentially. After line 6000. control returns to
2010.
Recursive capability: Functions may also be recursive that is, they may call themselves. For
example:

100 DEF FNF(X) 'Factorial
110 IF X<=1 THEN FNF = 1 ELSE FNF = X*FNF(X-1)
120 FNEND

Avoiding function - I/O interaction
There are some noteworthy cautions regarding the placement of function calls, function
definitions and control transfers within the same program. For instance, do not transfer
program control into or out of a function definition. This can cause system stack difficulties
leading to unpredictable behavior. Additionally, when dealing with functions that perform
I/O operations, like READs, WRITEs, PRINTs and INPUTs, avoid calling these functions
within other I/O statements. It may be confusing to the I/O handler to call a function to do
a READ, for instance, while the function is being printed.

FDR 3058 1 Q — 1 4 J J a n u a r y 1 9 8 0

NUMERIC AND STRING FUNCTIONS 10

~

In the following example, the function FNI$ performs a file READ in both programs. In the
first program, WRONGPROG, FNI$ is placed on the I/O list and is called to do a file READ
while its value is being printed: PRINT FNI$(A). The second program, RIGHTPROG, solves
the problem of potentially ambiguous I/O by assigning the information returned by the
function READ to a temporary variable. T$. This information will not be intermixed with the
actual printout of the function.

WRCNGPROG
10 ! THIS IS WRCNGPROG
20 1 THIS FROGRAM MAY CONFUSE THE I/O HANDLER
30 !
55 ! DEFINE READ FUNCTION: FNI$
60 DEF FNI$(A) IREADS A STRING FROM FILE UNIT A
70 !
75 READLINE #A,X$
80 FNI$ = X$
90 !
100 !
110 FNEND
120 ! READ FILE 'YYY1, PRINT ON TERMINAL
130 A=l
140 DEFINE FILE #A = 'YYY'
150 FOR 1=1 UNTIL 1=2
160 PRINT FNI$(A)
170 ! NO TEMPORARY VARIABLE ASSIGNED TO FUNCTION READ
180 NEXT I

RIGHTPROG
10 1 THIS IS RIGHTPROG
20 1 THIS PROGRAM DOES NOT CONFUSE THE I/O HANDLER
30 1
55 ! DEFINE READ FUNCTION: FNI$
70 1
75 READLINE #A,X$
80 FNI$ = X$
90 !
100 !
110 FNEND
120 1 READ FILE 'YYY1, PRINT ON TERMINAL
130 A=l
140 DEFINE FILE #A = 'YYY'
150 FOR 1=1 UNTIL 1=2
160 T$ = FNI$(A) I ASSIGN VALUE RETURNED BY READ FUNCTION
170 ITO A TEMPORARY VARIABLE
180 PRINT T$
190 NEXT I

Local variables and arrays
The LOCAL statement enables both variables and arrays to be defined as local (as opposed
to global) in a function definition. LOCAL should appear immediately after the DEF
statement which indicates the beginning of a function definition. Variables or arrays to be
considered local to this function should not be referenced in the definition until after the
LOCAL statement is issued.
Defining local variables: Variables are declared local to a function by listing them in a
LOCAL statement, as in the example below:

10 DEF FNP$(X$,Y$,N)! pads X$ on right with character Y$.
20 LOCAL Z$

1 June 1981 10-15 FDR3058

10 NUMERIC AND STRING FUNCTIONS

30 Z$ = X$
40 Z$ = Z$ + Y$ UNTIL LEN(Z$) = N
50 FNP$ = Z$
60 FNEND

The variable Z$ takes on the values indicated in the function definition. These values are
retained over multiple calls to the function; that is, they are static variables. Z$ may appear
elsewhere in the program as a global variable and will be treated as a totally different
entity. Global and local variables of the same name can co-exist without affecting one
another.
Note that local variables, like function arguments, cannot be PRINTed in immediate mode
during a PAUSE or BREAK.
Defining local arrays: Arrays are defined as local in the same manner as are variables. The
example below shows the definition of local variables (line 20) and local arrays (line 30).

10 DEF FNA(X)
20 LOCAL I ,
30 LOCAL DIM A (10, 10)
40 A(I ,J) SIN(X*I*J)
50 FNA = DET (A)
60 FNEND

FOR I = 1 TO 10 FOR J = 1 TO 10

Enhancing modular programming
The LOCAL feature makes modular programming easier in BASIC/VM. Users can keep ^^.
libraries of functions for use in several different programs. Simply RESEQUENCE these
function definitions before LOADing them into the desired program. The need to search for
variable-name conflicts is effectively eliminated by the LOCAL feature. Variables not
defined as "local" are assumed to be "global". Thus the same variable, for instance, F, can
be used in both a local and global capacity in the same program without confusion.

Cursor positioning
During a PRINT operation, data can be displayed at any position on the terminal screen.
This is accomplished by moving the cursor to the desired screen location at which the item
is to be PRINTed.
Simple cursor positioning can be achieved in BASIC/VM by using the special "(§)" character.
"@" is a shorthand notation for the user-defined function, FNZ9$, which may be used to define
cursor control on a terminal screen.
With this function you can PRINT an item at a particular terminal screen location, by typing
PRINT, followed by: the @ character, and the parenthesized row and column coordinates, (row,
column) of the desired screen location.
For example, to position the cursor to row 12, column 4 during a PRINT operation, type:

PRINT <§ (12,4); 'string'

The cursor positions to row 12, column 4, and the indicated string, 'string', is PRINTed at this
screen position. Note, however, that this is just one method of defining a cursor control
function.
Cursor control functions: Cursor positioning requires that you be familiar with your
terminal's cursor positioning capabilities, as well as the control characters and codes
needed for cursor control. See the manual that came with your particular terminal for a list
of control codes. Each terminal type requires a different function definition to control cursor
positioning. However, most functions will be similar to the one listed below.

F D R 3 0 5 8 1 0 - 1 6 1 J u n e 1 9 8 1

NUMERIC AND STRING FUNCTIONS 10

Sample control function: The function shown below sets up cursor positioning for a FOX
terminal. Note that all margin checking should first be inhibited by typing: MARGIN OFF.
This eliminates any difficulties BASIC/VM may have in achieving the indicated column
position due to margin restrictions.

100 Margin off 1 release margin restrictions
110 1 Cursor-positioning function for FOX and OWL terminals
120 1
130 1 (r,c) are row, column coordinates
140 I char(155) is Escape and char(159) is Unit Separator:
150 I when followed by the x and y keys respectively,
160 I these sequences control cursor position on the
170 1 FOX and OWL terminals
180 1
190 Def @(r,c)=char(155)+,x'+char(159+r)+char(155)+ly,+char(159+c)
200 1
210 ! This function tells BASIC how to do cursor positioning
220 1 given values for r and c
230 1
240 Print @ (12,30); 'ABCDE'
250 1
260
270
280

1 This prints ABCDE at row 12, column 30 on a
1 FOX or an OWL screen
1

1 June 1981 10-17 FDR3058

Expressions

NUMERIC AND STRING FUNCTIONS 10

r
-

r

Sample control function: The function shown below sets up cursor positioning for a FOX
terminal. Note that all margin checking should first be inhibited by typing: MARGIN OFF.
This eliminates any difficulties BASIC/VM may have in achieving the indicated column
position due to margin restrictions.

100 MARGIN OFF
110 REM Cursor-positioning function for FOX terminal
120 1
130 DEF @ (X,Y)=CHAR (155)+'X'+CHAR (32X)+CHAR+'Y'+CHAR (32+Y)
140 !
150 PRINT @ (12,30); 'ABCDE'

This function enables the printing of string 'ABCDE' in row 12, column 30 on a FOX screen.

"

1 J a n u a r y 1 9 8 0 1 0 - 1 7
FDR 3058

Expressions

INTRODUCTION
Expressions can generally be defined as combinations of operands and operators in some
form that can be evaluated. Expressions are a fundamental part of the BASIC/VM language
structure. For example, it would be impossible to establish complex conditions for program
control transfer without them. This section explains all the rules and regulations governing
the formation and evaluation of expressions in BASIC/VM. There are four types of
expressions:

• Logical
• Numeric (arithmetic)
• Relational
• String

Expressions are generally evaluated to yield a single result. Evaluation protocol is discussed
first, as it applies to all expression operations.

EVALUATION PRIORITY LIST
All types of expressions in BASIC/VM are governed by the same evaluation rules. These
rules dictate the order in which the individual components of an expression are to be
evaluated. Evaluation is performed according to an established operator priority. This list
indicates which operators have precedence over which, so that misinterpretation of a
complex expression is unlikely.
The priority list is:

Expressions in parentheses
System and user-defined functions
"(or **)
NOT. unary (+ .-)
V.MOD
+,—
MI N.MAX
relationals (=.< . > ,<=,>=,< >)
AND
OR

Parenthetical expressions are always evaluated first, regardless of the operations they
contain. Operations within parentheses are performed in order of priority. Then, the rest of
the expression is evaluated, with operators of higher precedence being evaluated before
operators of lower precedence, as dictated by the priority list. Operators at the same priority
level are evaluated in left-to-right order, as they appear in the expression.

NUMERIC EXPRESSIONS
Numeric (arithmetic) expressions can consist of any combination of numeric constants,
numeric variables, numeric array references and arithmetic operations. For example:

1 J a n u a r y 1 9 8 0 1 1 - 1 FDR 3058

11 EXPRESSIONS

G2(Q1/Q2)
RND(l) + COS(Q)
A(2) + A(3) + A2

are all numeric expressions.

Arithmetic operators
The arithmetic operators used in forming numeric expressions are listed below.

Operator Meaning
UNARY

Exampl

+ plus + 1
- minus - I

BINARY
+ addition I + J
— subtraction 1-J* multiplication I*]
/ division I/I
"(or **) exponentiation 1*2
MOD remainder from division

(Modulus)
I MOD

MIN lesser value 1 MIN
MAX greater value I MAX

Evaluating numeric expressions
Numeric expressions are evaluated according to operator priority, as listed in Table 11-1.
above. Parts of expressions enclosed in parentheses are evaluated first, from left to right, as
they occur in the expression. Operators at the same priority level are evaluated in the order
in which they appear; again, from left to right.
For example, consider the following simple numeric expression:

E = (A + B) /2

The addition operation. (A + B), being within parentheses, is performed first; then, the
division by 2 is performed, even though the division operator has higher priority. The final
result is then assigned to E. Remember that operators with equal priority are evaluated from
left to right.
A more complex numeric expression, such as the one below, would be difficult to tackle
without precedence guidelines. This expression:

A + B - C

is interpreted as:

(A + B) - ((C * D) * ((E~FrO)

Evaluation of this expression occurs in the following steps, according to operator priority:
1. parenthetical expressions, in the order they appear:

a. (A+B)
b. (C*D)
c (E-F)

FDR 3058 11-2 1 July 1982

EXPRESSIONS 11r

r

-

2. the exponential operations, in two steps:
a.(ET)
b. (ET)-C

3. result of C*D multiplied by result of ((E"F)"G)
4. the result of A+B minus the result of step 3

Note that evaluation of exponential expressions has been changed to conform with ANSI
standards. The expression A"B"C is now evaluated as (A"B)"C; originally it was evaluated
as A"(B"C).

STRING EXPRESSIONS
String expressions may be composed of various combinations of string constants, string
array references and string function references, joined by the string operator. This operator.
"+", is also known as the "'concatenation"' operator. Concatenation means appending one
string to another as in:

10 A$= "CORN"
20 B$= "FLOWER"
30 C$=A$+B$
40 PRINT C$
50 STOP
>RUNNH
CORNFLOWER
STOP AT LINE 50

It is illegal to combine numeric and string operands in a string expression. Numeric values
cannot be concatenated to string items. For example, the expression, "DS=A + B$", is
ILLEGAL.

RELATIONAL EXPRESSIONS
Relational expressions are composed of numeric or string operands and relational opera
tors. For example, A > B or AS < =BS. String operands cannot be compared with numeric
operands.

Relational operators
Relational operators are used to compare two or more numeric or string items. Below is a list
of relational operators.

Operator
<

Meaning
Less than

Examples
X < Y

Greater than XI > Y1
Equal I=J1
Less than or eq ual)2<=J3

Greater than or equal Z > =10

Not equal D < > 19

> =
= >
< >
> <

Evaluating Relational Expressions
All relational operators are at the same priority level, just below the MIN and MAX
operators in the priority list. They are evaluated in the order in which they appear in an
expression.

^ J u l y 1 9 8 2 1 1 - 3 F D R 3 0 5 8

11 EXPRESSIONS

Evaluating numeric relationals: Numeric relational expressions are evaluated on a strictly
numeric basis. For example:

20 IF A>B GOTO 100

The "GOTO 100" clause will be executed only if the value of A exceeds the value of B.
Otherwise, the next sequential statement will be executed.
In the statement:

10 IF A>=(B+C/D) GOTO 40

the expression (B+C/D) is evaluated and compared with the value of A. Control will be
transferred to statement 40 only if the value of A is greater than or equal to the value of (B
+ C / D) . ^
Relational expressions may also be written in the form:

IF A THEN GOTO 40

The sub-expression, "IF A", is interpreted by the compiler as: "IF A < > 0". An expression
is considered "true" if it evaluates to a non-zero value. Conversely, an expression that
evaluates to zero is considered "false". Therefore, if A is true, that is, if it does NOT
evaluate to zero (0), then the transfer to statement 40 will take place.
Evaluation of string relational expressions: Comparison of values in string relational
expressions is done on a character-by-character basis. Characters are ranked by
alphabetical order. Each letter has a corresponding ASCII code, with "A" having a value of
193, and "Z", a value of 218. Characters in the beginning of the alphabet have lower decimal
values and less rank than those towards the end of the alphabet. See Appendix B for a
complete list of characters and their decimal values.
If the strings being compared are of different lengths, the shorter of the two is padded
(internally) on the right with blanks until the strings are the same length. The strings are
then compared, character by character, until the first non-common character is reached in
both strings. At this point, a decision is made on the basis of the relative alphabetical rank
of the two characters being compared.
For example, if the strings "Z" and "AZ" are compared, "Z" is considered greater than "AZ"
because the decimal value of "Z" (value:218] is greater than the decimal value of "A"
(value:! 93).
Below are additional examples of string relational expression evaluation. The first example
compares two strings, "MICHELOB" (AS) and "MILLER" (B$). The first two letters of the
strings are identical, so comparison is done on the third character of each string.

05 PRINT "THIS IS A COMPUTER TASTE-TEST"
10 A$="MICHELOB"
20 B$="MILLER"
30 IF A$>B$ GOTO 55
40 PRINT "MILLER IS GREATER THAN MICHELOB"
50 GOTO 60
55 PRINT "MICHELOB IS GREATER THAN MILLER"
60 END
>RUNNH
THIS IS A COMPUTER TASTE-TEST
MILLER IS GREATER THAN MICHELOB

FDR 3058 1 1 - 4 1 J a n u a r y 1 9 8 0

EXPRESSIONS 11

-

Lower-case letters have a higher decimal value than upper-case letters. For example:

10 A$="bad"
20 B$="BAD"
30 IF A$=B$ THEN PRINT "EQUAL"
35 IF A$>B$ THEN PRINT "A$ GREATER" ELSE PRINT "A$ LESSER"
40 END
>RUNNH
A$ GREATER

If strings are to be compared on the basis of physical length and not relational value, use the
LEN function, as in:

10 A$="HI"
20 B$="HARVEY WALLBANGER"
30 IF LEN(A$) < LEN(B$) GOTO 60
40 PRINT "WRONG"
50 PRINT
60 PRINT A$: "IS SHORTER THAN" :B$
65 END
>RUNNH
HI IS SHORTER THAN HARVEY WALLBANGER

Operator priority
String expressions are evaluated according to operator priority. The rules of precedence
are:

NOT
+

>,<,=,> = ,< = .< >
AND
OR

Relational operators have equal priority and are evaluated in left to right order if more than
one appears on a statement line. Parenthetical expressions are evaluated first, as always.
Within parentheses, evaluation proceeds according to operator priority. For example, in
evaluating this expression:

IF A$ <= B$ + (C$(X) + X$) THEN GOTO 100

the following steps are taken:
1. The parenthetical expression (C$(X)+ X$) is evaluated.
2. B$ is concatenated to the result of step 1.
3. A$ is compared to the result of step 2.
4. If A$ is less than or equal (on the basis of character rank) to the result of

step 3, control transfers to line 100; if the condition is false, control
transfers to the next sequential statement.

1 J u n e 1 9 8 1 1 1 - 5 F D R 3 0 5 S

11 EXPRESSIONS

LOGICAL EXPRESSIONS
Logical expressions usually consist of one or more relational expressions and are joined by
logical operators. Both numeric and relational expressions appear in the same logical
expression. Logical expressions are evaluated according to the familiar "Truth Table",
represented in Figure 11-1. Logical expressions are generally used with one of these
keywords to determine program flow control: IF, WHILE, UNLESS or UNTIL.

Logical operators
Below is a list of logical operators, their meanings and an example of each in use:

O p e r a t o r M e a n i n g E x a m p l e
A N D L o g i c a l " a n d " I = J A N D K $ = L $
O R L o g i c a l " o r " I = J O R I = K
NOT Log ica l comp lemen t NOT I

The three logical operators, AND, OR, NOT are used to combine relational expressions.
They determine whether a statement is ultimately true or false. Figure 11-1 illustrates the
evaluation of logical expressions under different true-false conditions. An expression that is
true has a value not equal to 0; if false, it has a value of 0.
The result of a logical expression evaluation (true or false) is used to determine the flow of
control within a program. Many of the examples in Section 6 use complex expressions to
establish conditions for control transfer. For example, the following simple program shows
the combination of relational expressions and logical operators to set up a logical ex
pression, or condition, upon which control transfer will be based.

10 INPUT A,B
20 IF A>B AND BO0 GOTO 80
30 IF A<B GOTO 60
40 PRINT "A=B"
50 GOTO 90
60 PRINT "A<B"
70 GOTO 90
80 PRINT "A>B"
90 END

The expression "A > B" in line 20 is evaluated using the values entered at line 10. If the
expression is true, a GOTO is executed. If false, the next sequential statement is executed,
and so on.

Evaluation of logical expressions
In a complex logical expression, each part is evaluated according to the operators present;
then the entire expression is evaluated to a single result. The logical operators AND, OR and
NOT determine whether the entire expression is false or true. The NOT operator ranks just
below exponentiation on the priority list; AND and OR are the lowest operators on the
priority list, and are therefore the operations to be performed in the evaluation process.
Given the values:

E=0
A=6
C=3
B=2
D=7

F D R 3 0 5 8 1 1 - 6 1 J u n e 1 9 8 1

EXPRESSIONS 11

TRUE FALSE
T
R
U T F
E

F
A
L
S

F F

E

AND

TRUE FALSE
T
R
U T T
E
F
A
L
S

T F
F,

OR

NOT
Figure II-1. Truth table for logical expressions

The expressions below would be evaluated as indicated:
Evaluates to FALSE since the first term in the ex
pression is false.
Evaluates to TRUE since both terms in the expression
are true.
Evaluates to FALSE since both expressions are false.
Evaluates to TRUE since one term of the expression (A)
is true.

NOT E Evaluates to TRUE since E=0.
Note

Logical expression values can only be used in statements
containing the keywords: If, WHILE, UNLESS, or UNTIL.
Expressions such as "LET A=B < > C". or "A=B AND C" are
ILLEGAL.

E AND A-C/3

A+B AND A*B

A=B OR C=SIN(D)
A OR E

1 June 1981 11-7 FDR3058

REFERENCE

r
r

PRIMOS commands

~ >

INTRODUCTION
This section summarizes all the PRIMOS commands referenced in this book. PRIMOS
commands may be entered in upper- or lower-case letters. Abbreviations appear in rust-
colored letters. All applicable conventions are listed in Section 2 of this guide.

PRIMOS COMMANDS

▶ ATTACH new-directory
new-directory is the pathname of the new working directory to which the user wants to be
attached; becomes the current working directory. If any directories in the pathname are
passworded, the entire pathname should be enclosed in single quotes, as in:

A 'FLOWER STEM>ROSE'

▶ AVAIL j disk-number 1
(packname)

Returns the number of normalized disk records available on a specified disk or the current
disk (*), calculated at 440 words per record. The number of words per normalized record
may not correspond to the number of words per physical record on the disk in question.

▶ BASICV [pathname]
Invokes the BASIC/VM subsystem from PRIMOS command level. The system responds with
the latest revision number and the query, NEW OR OLD:. Once a NEW filename or an OLD
filename has been entered, the system responds with the BASIC/VM prompt character > .
If the pathname option is given, this command runs the named BASIC/VM program and
returns the user to PRIMOS command level.

Closes file units specified by xl through xn . ALL option closes all file units (except COMO
file units) currently opened by user or system. A list of open file units can be obtained with
the STATUS UNITS command.

W' CNAME oldname newname
Changes oldname, a filename or the last portion of a pathname identifying a sub-UFD or file
to newname, a new filename.

▶ C O M I N P U T

-CONTINUE
-END
-PAUSE
pathname
-START
-TTY

1 J a n u a r y 1 9 8 0 1 2 - 1 FDR 3058

12 PRIMOS SYSTEMS COMMANDS

If pathname is specified, calls in and reads commands from the specified file (called a
command file) rather than from the user's terminal; otherwise, one of the following control
.options is performed:

(-CONTINUE j Resumes execution of the command file after a -PAUSE.
t -START '
(-END) Closes command file and causes PRIMOS to resume taking
j_TTY \ commands from the terminal. Either CO. -END or CO -TTY

should be the last command in the command file.
-PAUSE Temporarily suspends execution of the command file. Allows

commands to be given from the terminal without closing the
command file.

CONTINUE
-END

COMOUTPUT I "?JTTJL-PAUSE
pathname
-TTY

If pathname is specified, creates a file in which all terminal I/O is stored; otherwise,
performs one of the following control options:

-CONTINUE Continues command output to pathname.
-END Stops command output to the specified file and closes command

output file units.
-NTTY Turns off terminal output. Does not display responses to com

mand lines. Terminal output is resumed when COMO-TTY
command is given.

-PAUSE Stops command output to pathname; however, the command
output file remains open.

-TTY Turns on terminal output, (default)

▶ CREATE pathname
Creates a new file directory (sub-UFD) within specified directory. Two files with the same
name are not allowed in the same directory.

▶ DELETE filename
Deletes a specified file from the current UFD or sub-UFD. filename is any existing file or
empty directory to be deleted. If a ufd-name, under which there are no files or sub-UFDs,
is specified, the entire UFD will be deleted.

▶ L I S T F
Lists all entries under the current UFD, including all directories and files.

▶ LOGIN ufd-name
Allows access to files and programs in a specified directory; ufd-name is the name of a login
directory. The LOGIN command must be typed before any interaction with the system can
take place. If no command is given and interaction is attempted (or if the wrong ufd^iame
is given) PRIMOS responds with an error message. To a legal LOGIN command PRJMOS
responds with the terminal number, the current time, the current date, and finally the
PRIMOS prompt 'OK,'.

▶ L O G O U T
Terminates all interaction with PRIMOS.

- 1 9 9 1 J a n u a r y 1 9 8 0F D R 3 0 5 8 l s > *

PRIMOS SYSTEMS COMMANDS 12

r

r

r

PRIMOS responds to the command with the terminal number, the current time of day, and
the amount of computer (CPU) time used.

▶ PASSWD owner-password [nonowner-password]
Protects the current directory by specifying owner and nonowner (optional) passwords
which are required in order to access (attach to) the directory.

▶ PROTEC pathname [owner-rights, [nonowner-rights]]
Sets protection (access) rights on the file specified by pathname, owner-rights is an integer
specifying owner's access rights to the file; nonowner-rights is an integer specifying
nonowner's access rights to file. Access rights are listed below:

0 No access of any kind
1 Read only
2 Write only
3 Read and write
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write
7 All access

Default: Keys are 7 0 (owner has all rights, nonowner has none).

▶ SIZE pathname
Returns the size in records (decimal) of a file specified by pathname. The number of records
per tile is defined as the number of data words in the file divided by 440, rounded up.

▶ SLIST pathname
Displays the contents of file specified by pathname at the terminal.

-AS alias
-AT destination

SPOOL < -CANCEL [PRTJxl [,...xn]
-LIST
pathname

If pathname is specified, causes the line printer to type out a specified file. PRIMOS assigns
the hie a number in the form PRTx, where x is a number between 001 and 200. (This number
may vary on a per-installation basis.) The -LIST option returns a list of all users whose files
are in the queue to be spooled. The list includes user name, filename, and file size The -AS
option spools the file under an alias, or different filename. The -AT option sends the file to
a hne printer at the indicated destination. The -CANCEL option removes file or files
identified by PRTx] from the spool queue. Binary files cannot be spooled. Files are printed
according to the time the file was spooled or according to file size.

STATUS

ALL
DISKS
ME
NETWORK (
U N I T S \
U S E R S)

Returns system status information indicated by specified options. ALL returns all status

nZT°ni mCl?din? '^ nam6S and P^^^-logical disk correspondence (DISKS)network information (NETWORK), user information (USERS), and number of open file

1 J a n u a r y 1 9 8 0 1 9 qi Z _ d F D R 3 0 5 8

12 PRIMOS SYSTEMS COMMANDS

units on the current disk (UNITS). The ME option returns user-related status information,
including user-number, line number, open file units, etc.

▶ TERM [option(s)]
The most commonly used options are:

- E R A S E , r t u a * U »
character Sets user's choice of erase character in place ol the detault, .
-KILL character Sets user's choice of kill character in place of default, ?.
-XOFF Enables X-OFF/X-ON feature which allows program output to

terminal to stop without returning to Primos command level.
Programs can be halted by hitting CONTROL-S. Programs may
be resumed at point of halt by hitting CONTROL-Q. Also sets
terminal to full duplex (default value).

-NOXOFF Disables X-OFF/X-ON feature (default).
-DISPLAY Returns currently set values of erase and kill characters. Also

displays current duplex setting, Break and X-ON/X-OFF status.
If no options are specified, the TERM command will return a complete list of TERM options.

▶ U S E R S
Returns the number of users logged into PRIMOS at any given time.

~ >

"

'

FDR 3058
12-4 1 January 1980

BASIC/YM commands
"1

~ >

The following is an alphabetized description of all BASIC/VM system commands. Commands
are issued at BASIC/VM command level, in response to the BASIC system prompt character, ^8
">". Commands may be typed in uppercase or lowercase letters. Some commands may also be
used as statements and are so indicated. Command abbreviations are in rust.

▶ A L T E R l i n e - n u m b e r 1 8
Enters an editing mode to allow modification of indicated program line. Editing subcom
mands, listed below, are entered in response to the special ALTER mode colon (:) prompt.
More than one such command can be packed into a single line; no delimiter is necessary.
The colon prompt is returned until QUIT is typed.

Subcommand Function
A/string/ Append string to end of line.
Bnn Move pointer back nn characters (where nn is any integer).
Cc Copy line up to but not including c (where n is any character).
Dc Delete line up to but not including c.
E n E r a s e n c h a r a c t e r s .
F C o p y t o e n d o f l i n e .
I/string/ Insert string at current position. (The slash (/) may be any

delimiter not used as part of the string.)
M n M o v e n c h a r a c t e r s .
N Reverse meaning of next C or D parameter (copy until character

< c, or delete until character >c).
O/string/ Overlay string on line from current position. A '!' changes a

character to a space, a space leaves character unchanged.
Q E x i t f r o m A L T E R m o d e .
R/string/ Retype line with string from current position. (Similar to Over

lay but '!' and space have no special effects.)
S Move po in ter to s tar t o f l ine .

▶ A T T A C H p a t h n a m e 1 1 8
Attaches to directory specified by pathname; may have one of the following formats:

1. * > sub-ufd-name
where * indicates the current directory

2 (<r * *>)' i ... f ufd-name] > sub-ufd-name]
/ < d i s k > \ ' '
where < disk > is the logical disk number on which directory named by
ufd-name is located. < * > indicates current disk. More than one sub-
ufd-name may be indicated if sub-ufds are nested.

3. ufd-name [> sub-ufd-name]
where directory named by ufd-name is located on the current disk.

ATTACH <6>MANUALS>REV16>PROGCOMP>BASICV

1 J u n e 1 9 8 1 1 3 - 1 FDR3Q58

13 BASIC/VM SYSTEM COMMANDS

Although similar to the PRIMOS ATTACH command, this command may not be abbreviated
and is issued al BASICV command level. If directories are passworded, the passwords must
be included.

181 ▶ BREAK I25LI lin-num-1 [,...lin-num-n]OFF'

Sets and unsets breakpoints at indicated statement lines for debugging, line-1 through line-
n are statements at which the program is instructed to stop. A maximum of 10 may be set.
The LBPS command returns a list of all currently set breakpoints.
If a statement line at which a breakpoint is set is reached during execution time, the program
stops and returns to BASIC/VM command level; type CONTINUE to resume execution.
BASIC/VM resumes execution with the statement specified by BREAK ON, and continues
until the next breakpoint, STOP. END, or error is encountered.
If statement numbers are not specified with BREAK OFF, all previously sel breakpoints are
automatically turned off.

181 ▶ CATALOG [option(s)]
Lists all filenames under the current UFD, plus option information, if specified, option(s)
are any or all of the following:

O p t i o n D e s c r i p t i o n
DATE Returns the date and time of files' last modification.
PROTECTION Returns the files' protection attributes (owner and nonowner

rights). See Section 2.
SIZE Returns the size of each file in records.
TYPE Indicates whether the file is SAM, DAM. SEGSAM. SEGDAM.

or a UFD.
ALL Includes all of the above information.

If no options are specified, CATALOG returns only the filenames.

18 | ▶ CLEAR
Resets all previously set numeric or string variables to zero or null respectively. Also
deallocates previously defined arrays and closes all open files. Useful in Immediate mode
calculations. / CONTINUE

19.0| ▶ COMINP } filename
PAUSE
TTY

19.0 | Opens and reads commands in command file of specified filename. If control options
(CONTINUE, PAUSE) are specified, command file halts at COMINP PAUSE, resumes with
COMINP CONTINUE. Commands in this file are executed until a COMINP TTY command
is reached. This is generally the last command in the COMINP file. COMINP may also be
used as a statement; see Section 14.

Note
As a command, COMINP takes an unquoted argument: as a
statement, it takes a legal BASIC string argument.

181 ▶ COMPILE [pathname]
Translates the foreground source program into an executable binary program (machine
language) which can be named and saved by specifying pathname. This binary file can be
executed directly by specifying its pathname with EXECUTE. See EXECUTE. If the
filename (pathname) is omitted, the system compiles the code into user memory for use with

F D R 3 0 5 8 1 3 - 2 1 J u l y 1 9 8 2

BASIC/VM SYSTEM COMMANDS 13

EXECUTE but no binary file is saved to disk. COMPILE also displays at the terminal any
syntax errors (such as, bad statement format, misspellings, etc) that may occur in the
program. These are known as "compile-time" errors, as distinguished from "run-time"
errors which occur during program execution.

▶ C O N T I N U E
Resumes program execution after a PAUSE or a breakpoint.

DELETE lin-num-1 [,.. .lin-num-n]
lin-num-1 - lin-num-n

Deletes the specified statement lines from program, lin-num-1 through lin-num-n are
statement numbers to be deleted. Statements may be listed individually, separated by
commas (as in first format), or they may be specified in a range (as in second format), the
beginning and end of which are separated by a dash, as in 10-300.

▶ EXECUTE [pathname]
If no pathname is specified, the currently compiled code in user memory is executed. When a
binary file pathname is given, the binary file is immediately executed. When an uncompiled
source file is specified, EXECUTE compiles and executes it. EXECUTE also displays any run
time errors that may occur during program execution. Run-time errors are usually logic or con
trol errors which interrupt or inhibit program execution, for example, a READ after a WRITE to
a sequential file.
▶ EXTRACT (num-l [, . . . l in-num.n]

\hn-num-l - lin-num-n

Deletes all except the specified lines, lin-num-1 through lin-num-n are statement numbers to
be saved. Statement numbers may be listed with comma separators, or they may be
specified in a range, by using a dash. The statement numbers must be in ascending order.

▶ FILE [pathname]
Saves all input and modifications to current file under original name (default), or under new
name specified by pathname. When filing a program, there are several points to remember:

• If a pathname is not specified, BASIC/VM automatically uses the name of
the foreground file.

• If a pathname different from the original name is specified, you will have
two versions of the same file. If the pathname already exists, BASIC/VM
returns the prompt:

FILE EXISTS.OK?

• All responses other than Y, YE, YES or OK, are interpreted as NO, and the
following prompt appears:

NEW FILE NAME:

• A program need not be complete to be FILEd. It is advisable to FILE
periodically to avoid losing file modifications due to an inadvertent typing
error. However, be sure to FILE a modified program before calling in
another file or exiting the system.

▶ L B P S
Lists currently set breakpoints. Breakpoints are set by the BREAK ON command.

18

18

18

18

18

1 June 1981 13-3 FDR3058

13 BASIC/VM SYSTEM COMMANDS

18

18

18

18

18

▶ L E N G T H
Reports the number of statements in the current program.

▶ LIST1NH1 / lin-num-1[,...lin-num-n]1 J (lin-num-1 - lin-num-n

Displays the contents of the foreground file at the terminal. NH option suppresses program
header (date, title etc), lin-num-1 through lin-num-n are statement numbers which may be
listed individually with comma separators, or specified in a range, the beginning and end of
which are separated by a dash.

W" LOAD pathname
Merges external file, specified by pathname, with foreground file. Line numbers in the
external file which are duplicated in the foreground file are overwritten by those in the
external file; otherwise, lines are inserted or appended in numerical sequence.
If the specified file is binary, it is loaded into user memory but does not become part of the
foreground file. After a binary file LOAD, an EXECUTE with no pathname will run the just-
LOADed binary file.

[> NEW [pathname]
Indicates to BASIC/VM that a new foreground file is to be created with the specified name.
If this pathname already exists, BASICV asks, FILE EXISTS. OK?. If the answer is "YES" or
"OK", all lines previously in the foreground are overwritten.

▶ OLD [pathname]
Calls an existing file, identified by pathname, to the foreground. The last component of the
pathname is the name of the file being called to the foreground. In the following example,
STARTREK is the file called to the foreground:

OLD GAMES>BASIC>JUNK>STARTREK

PERF
(ON)) OFF I
) TABLE () [lin-num-1 [-lin-num-2]]
(HIST) j [screen-size] (CNT) [lin-num-1 [-lin-num-2]]

]avg[(TTL)
Measures program performance efficiency. The ON and OFF arguments turn performance
measurement on or off, respectively. PERF ON must be issued prior to program compilation.
TABLE option prints the following performance information in tabular form: statement
number (SN), number of times each statement was executed (CNT), the average statement
execution time (AVG), the standard deviation of execution time (DEV), the total running
time of each statement (TTL) and the total squared sum of the run-time of each statement
(SQSUM). Times are measured in "ticks", typically 3.03 msec per tick, lin-num-1 specifies
the line number at which to begin displaying data, lin-num-2 indicates the program line
number at which to stop displaying performance data. Default is last line in program.
HIST displays data in histogram form, scaled according to screen-size; default size is
currently set BASICV margin. (Default margin is 80 characters). The CNT, AVG, TTL, lin-
num-1 and lin-num-2 options are identical to those described above. The symbols used to
plot data in histogram displays are:* (CNT)

. (AVG)
+ (TTL)

FDR3058 13-4 1 June 1981

BASIC/VM SYSTEM COMMANDS 13

r

▶ PURGE [pathname]
If pathname specified, deletes indicated file from directory. Default: deletes the disk copy
of the foreground file. A file currently open cannot be PURGEd.
After the PURGE command is issued, the file remains in foreground until another file
replaces it. PURGE can also be used as a statement; see Section 14.

▶ Q U I T
Returns control to PRIMOS from BASIC/VM command level. QUIT closes all files opened
by BASIC/VM, and deletes any temporary files created by BASIC/VM.

▶ RENAME newname
Changes the name of the foreground file, but does not rename the original disk copy of the
file. If the renamed file is FILEd, two copies of the file will exist with different names. The
renamed file will not be saved unless it is FILEd.

▶ RESEQUENCE [new-start] [,old-start] [,new-incr]
Renumbers statements in the foreground program, new-start is the number which begins the
new sequence. (Default: 100). old-start is the existing line number at which to begin
renumbering. (Default: lowest numbered line), new-incr specifies increment value. (De
fault: 10).

▶ RUN[NH] [l in-num]
Begins compilation and execution of the foreground source program, at lin-num, if specified.
No binary file is stored by the RUN process. NH suppresses the program title, date and time
usually displayed at run-time. RUN also displays all compile-time errors (statement syntax,
spelling, etc) and run-time errors (faults in program logic) that may occur during program
translation and/or execution.

▶ TRACE { qpF }
Used to examine program logic or flow control. Displays in brackets all statement numbers
as they are executed until the TRACE OFF command is typed. The statement numbers may
be stored in a separate file (see the PRIMOS command COMOUT, Appendix D). TRACE ON
is issued immediately after compilation (COMPILE) and immediately prior to program
execution (EXECUTE).

▶ TYPE pathname
Displays the contents of the specified non-foreground file at the terminal, but does not
replace the file currently in foreground.

18

18

18

18

18

18

18

1 June 1981 13-5 FDR3058

BASIC/VM statements

The following is an alphabetized description of all BASIC/VM statements and their formats.
Conventions are identical to those used for BASIC/VM system commands in Section 13. No
abbreviations are accepted. Statements which can be used as commands are so indicated.

r
r

BASIC/VM CONVENTIONS
All PRIMOS command conventions, as listed in Section 2 or Section 12. also apply to
BASIC/VM commands and statements. In addition, the following parameter representations
are used throughout this section:

P a r a m e t e r M e a n i n g
a r g F u n c t i o n a r g u m e n t
con Cons tan t (numer i c o r s t r i ng)
(dim) Dimension for array or matrix; a numeric item
expr An expression: that is, a combination of operands and operators

which can be evaluated. Can be either numeric (num) or string
(str).

s t r S t r i n g
v a r V a r i a b l e
unit File unit number (a numeric constant) on which file is opened

for reading and/or writing.
(P R I M K E Y |

▶ ADD //unit, str-expr-1, < KEY zero-expr = str-expr-2 keylist' K E Y I

where keylist = [,KEY num-expr-1 str-expr-3]*
Adds record, str-expr-1 . to MIDAS file, opened on unit. A primary key. PRIMKEY, KEY
zero-expr or KEY and its value, str-expr-2 . must be supplied. One or more secondary keys
may be specified in keylist, which contains the names, num-expr-1. and value(s). str-expr-3,
of secondary key(s). * indicates repetition of sequence as necessary.

^ CALL subr name (arg, [, arg] ...)
Calls any declared and shared system, non-system or library routine trom within a BASIC/VM
program. For details, see Section 6 of this guide.

▶ C H A I N p a t h n a m e
Closes all open files and
pathname.
^ CHANGE num-array TO str-var

Closes all open files and transfers program control to external program specified by
pathname.

I Iunc 1981 14-1 FDR3058

14 BASIC/VM STATEMENTS

element A(0) contains the length of A$. or 4. A(l) contains the decimal code of W, which is
215, and so on. Conversely, if array A is changed to AS. the resulting string length is
controlled by the value in A(0).

▶ CLOSE //unit-l[,...unit-n]
Closes files previously opened on unit by a DEFINE FILE statement, unit is maximum of 12.

▶ CNAME oldname TO newname
Changes name of specified file, oldname is the pathname of the file to be renamed;
newname is the new pathname or filename given to the file.

(CONTINUE
19.0| p. COMINP str-expr where str-expr is: jl^^T

v TTY

Stops execution of current program and executes commands from command file specified by
19. 0| filename. COMINP PAUSEand COMINP CONTINUE temporarily halt and restart the command

file, respectively. Commands in file are executed until COMINP TTY, the last command in the
file, is reached. Also used as a command; see Section 13.

▶ DATA item-l[,...item-n]
Lists numeric and string constants to be accessed by a READ statement. For example, given
the following READ and DATA statements:

DATA 12, 45, 'BULL'
READ A, B, C$

The variables A, B and C$ will be assigned the values 12, 45 and BULL, respectively. There
may be any number of DATA statements within the same program.

▶ DEFINE READ FILE//unit = filename [.type-code] [.record-size]
APPEND

Opens file, named by filename, a string expression, on specified unit. Optionally assigns file
type and access method, indicated by type-code. Type-codes are listed in Table 14-1,
following. If no type-code is given, the default (ASC) is assumed. The default record length
of 60 words (120 characters) may be increased or decreased by specifying record-size, (a
numeric expression) in number of words. For MIDAS files, record-size should be set equal
to the combined length of the data record and the primary key; this is specified during
CREATK when the template is being created. Access may be restricted to read or append
only with the READ and APPEND options respectively. A file DEFINEd as a READ file is
assumed to exist.

▶ DEFINE SCRATCH FILE #unit [,file-type] [,record-size]
Opens a temporary file on specified unit, of any type except MIDAS. When unit is closed,
the SCRATCH file is automatically deleted.
▶ DEF FN var [(arg-1,...arg-n) J = expression
Defines a one line function named by var, a string or numeric variable. (No FNEND
statement necessary.) Arguments (arg-1 to arg-n) are numeric or string scalar variables only.

▶ DEF FN var [(arg-1,...arg-n)]

FNEND
Sets up a user-defined numeric or string function of one or more lines. The last line in the
function definition must be FNEND. var is a simple numeric or string variable, arg-1 to arg-

FDR 3058 1 4 _ 2 l J u l y 1 9 8 2

BASIC/VM STATEMENTS 14

n are dummy arguments for the function; they may be numeric or string scalar variables.
The defined function is not executed until referenced in the program, at which point control
shifts to the function definition until FNEND is reached.

DIM var (num-con)
(num-con-1, num-con-2)

Defines the dimensions of a numeric or string array or matrix, named by a numeric or string
variable, var. Dimensions are represented by (num-con and num-con-2), numeric constants.
Default: (10) or (10,10). Variables are not legal dimension specifiers in DIM statements. The
lowest element of an array is always (0) or (0,0). Arrays and matrices may be redimensioned
within a program with the MAT statement.

▶ D O

r DOEND
ELSE DO

DOEND
Sets up a series of statements in association with IF-THEN statements, executed if a
specified condition is met. DOEND indicates the end of the series. ELSE DO is an optional
alternative to previous set of DO statements. ELSE can also be used in conjunction with IF.
(See IF statement). Dots (.) represent statements in program.
▶ E N D
Terminates program execution: serves as messageless STOP.

W1 ENTER time-limit, time-var, var
Allows a specified number of seconds, time-limit, (numeric expression in the range 1 to 1800),
for user input of a value for a numeric or string variable, var. No prompt is given, time-var, a
numeric variable, returns the actual time taken to enter value. Only one value can be entered
from the terminal.

▶ ENTER § user-num-var [,time-limit, time-var, var]
Returns user number assigned at LOGIN in a numeric variable, user-num-var. Other options
are same as for ENTER.

19.0

r
r

▶ ERROR OFF
Turns off all error traps in conjunction with the ON ERROR GOTO mechanism.

▶ FOR index = start TO end [STEP incr]

Specifies beginning of loop; always used with NEXT statement. The loop index, which changes
during program execution, is specified by index, a numeric variable. The initial value of the
index is set to start, a numeric expression; the increment value is set by incr, a numeric expres
sion; and the final value of the index is represented by end, a numeric expression. When the
index attains this value, loop execution stops. The STEP increment has a default value of 1.

^ FOR index = start [STEP incr] \ iTMTII i condition-expr

Specifies the beginning of a loop with statement modifier. Used in conjunction with NEXT.
condition-expr. a conditional expression, determines how long the loop will be executed.

19.0

1 July 1982 14-3 FDR 3058

14 BASIC/VM STATEMENTS

The WHILE modifier indicates that loop execution will continue as long as the specified
condition remains true. UNTIL specifies that loop execution will continue until the specified
condition is met. start represents the initial index value; incr optionally sets the increment
value. The default STEP size is ZERO for loops with modifiers.

Table 14-1. File Type-Codes
Access

Type-Code Method
A S C S A M
(default)

ASCSEP

ASCLN

ASCDA

BIN

BINDA

MIDAS

SAM

SAM

DAM

SAM

DAM

SEGDIR SEGDR

MIDAS

Contents
ASCII data, formatted like terminal output with spaces
as data delimiters. Commas, colons and semicolons
define the appropriate number of spaces to be used as
data delimiters. Records variable-length and easily in
spected.
ASCII data stored with commas inserted as data de
limiters. Data stored and read back exactly as entered.
Records fixed-length, accessed sequentially.
ASCII data with comma delimiters, and line numbers
inserted in increments of 10 at the start of each record.
Can be edited at BASICV command level.
Similar to ASCSEP. Records fixed-length and blank-
padded as necessary. Direct access method used for
quick, random access to any record in the file.
Data storage transparent to user. Records are fixed-
length, accessed sequentially. String data stored in
ASCII code: numeric data stored in four-word floating
point form. Provides maximum precision and speed of
access, but cannot be inspected by TYPE etc.
Same as BIN but direct access method is used for
random record access. Records not data-filled are ze
roed out.
Identifies file as a segment directory. Subordinate files,
identified by number, may be SAM, DAM or other
SEGDIR files. An additional DEFINE is required to
access a subordinate file.
Multiple Index Data Access files. Created by Prime-
supplied MIDAS utilities.

The following are examples of legal and illegal loop nesting.
Two-level Nesting (Legal):

FOR II UNTIL 11=13
FOR 12 = 1 TO 13

NEXT 12
NEXT II

FDR 3058 14-4 1 January 1980

BASIC/VM STATEMENTS 14

r

Three-level Nesting (Legal):

FOR II = 1 TO 10
FOR 12 = 1 TO 10

FOR 13 = 1 TO 10

NEXT 13
NEXT 12

NEXT II

Examples of unacceptable nesting techniques are:
Two-level Nesting (Illegal):

FOR II UNTIL 11=13
FOR 12 = 1 TO 10

NEXT II
NEXT 12

Three-level Nesting (Illegal):

FOR II = 1 TO 10
FOR 12 = 1 TO 10

FOR 13 = 1 TO 10

NEXT II
NEXT 12

NEXT 13
Note

The statement modifiers FOR, WHILE, UNTIL and UNLESS
may be used with all executable BASIC statements. However,
UNLESS may NOT be used in FOR-loops.

▶ GOSUB lin-num
Unconditionally transfers program control to an internal subroutine beginning at specified
lin-num. A RETURN must be executed to terminate the subroutine. Up to 16 GOSUB
statements may be nested.

▶ GOTO lin-num
Transfers program control forward or backward to a specified lin-num. A loop may be
created when the specified line number appears prior to the GOTO statement. May be used
with IF.

(GOTO lin-num-1IF expr < THEN lin-num-1
(THEN statement-1

statement-2
ELSE 1 lin-num-2

1 J u n e 1 9 8 1 1 4 - 5 F D R 3 0 5 8

14 BASIC/VM STATEMENTS

Transfers program control depending on the value of a relational, logical or numeric
expression (expr). lin-num is the statement number to which program control is transferred
if the expression is true, statement-1 is executed if the preceding expression is true. If the
expression is not true, either statement-2 will be executed, or control will transfer to lin-
num-2, depending on which, if any, is specified. If expr is not true, and no alternative is
provided, the next sequential statement is executed.
IF statements may be nested to any level. IF may be used in one of the following
combinations:

"(GOTO line
< THEN line1. IF expr

L(THEN statement)
ELSE (line

(statement j

2. IF condition THEN DO

DOEND
[■"ELSE DO"

JDOEND

▶ INPUT ['prompt-string',] var-l,...var-n
Prompts user for input specified by var-1 through var-n which are either numeric or string
variables or array elements, separated by commas. If no prompt string is provided, the
default prompt character (!) is given; otherwise, the string is printed.
Strings entered in quotes will be accepted as input except for the quote delimiters which are
dropped. This allows leading and trailing blanks to be included in string values.
Trailing commas and excess data are ignored. Data must be input in the same order in which
the variables are given and must also match the variable type, or an INPUT DATA ERROR
will occur.

▶ INPUT LINE ['prompt-string',] str-var
Prompts user, with optional 'prompt-string', for str-var, a string variable or string array
element. Accepts entire input line, including colons, commas, and leading blanks as one
entry.

▶ [LET] var-1 [,...var-n] = expr
The assignment statement, used to assign values to numeric or string variables or array
elements; the keyword LET is optional, var-1 - var-n represent numeric or string variables
or array elements. Up to 100 variables may appear on the left side of the assignment
statement, expr is a numeric value, string expression or another variable.

LOCAL (var-1 [...,var-n]
(DIM var-l(dim-l)[,(dim-2)]

Declares the listed variables or array names, var-1 to var-n, to be local to the function
definition in which they appear, (dim-1) and (dim-2) represent dimensions for a one- or two-
dimensional array or matrix. Local variables and arrays maintain their values over many
calls to a function and are not altered by program operations external to the function
definition. Local variables and arrays are similar to function arguments in that they cannot
be LISTed during a PAUSE or BREAK.

^ -

FDR 3 05 8 14-6 1 June 1981

BASIC/VM STATEMENTS 14

r

r

▶ M A R G I N ; ^ e j

Sets number of characters per line to value, a numeric expression. Range is 1 to 1000; the default |l9.0
is 80. MARGIN OFF turns off all margin settings.

(ZER)
) CON f ftdim-l)

(dim-1,dim-2]^ M AT m a t = ^ > |
(null) l

Sets initial value of matrix elements to zero, one, identity or null. Also used to redimension
a one-dimensional matrix to (dim-1), a numeric expression, or a two-dimensional matrix to
(dim-1,dim-2), NULL can only be used on string matrices; it initializes all elements to a null
value. IDN transforms a matrix into an identity matrix, one in which all elements, except
those on the main diagonal, are 0: the main diagonal elements each have a value of one (1).
ZER initializes all matrix elements to zero. CON sets all elements equal to 1.

▶ MAT mat-3 = mat-1 j - | mat-2

Adds, subtracts or multiplies the elements of mat-1 and mat-2 to form a target matrix, mat-3.
In multiplication, the target matrix dimensions are the number of rows of mat-1 and the
number of columns of mat-2 .
Rules:

1. For addition and subtraction, the two matrices must have the same
dimensions, for example. DIM A(2.2). DIM B(2,2).

2. For multiplication, the number of columns in the first matrix must equal
the number of rows in the second matrix. The result will be a matrix with
the dimensions of the number of rows of the first matrix the number of
columns of the second matrix.

3. A matrix may not be multiplied by itself, nor can the current value of the
target matrix (the one appearing on left side of equation) be used in the
multiplication expression. For example. MAT A= A*C is illegal.

▶ MAT mat-1 = (expr) * mat-2
Multiplies each element of mat-2 by a specified numeric value (expr) and assigns results to
mat-1. If mat-1 is an existing matrix, its elements will be redefined, and its dimensions will
be changed to those of mat-2.

▶ MAT mat-1 = INV (mat-2)
Assigns the inverse values of a square matrix mat-2. (determinant not equal to the target
matrix, mat-1. The resulting values in mat-1 can be multiplied by mat-2 to yeild the identity
matrix in which all elements are equal to 1.

▶ MAT mat-1 = TRN (mat-2)
Calculates the transpose of the values of mat-2 and assigns them to target matrix mat-1 . A
matrix is transposed by rotating it along the main diagonal. For example:

14 7 I 2 3f 2 5 8 4 5 6
3 6 9 7 8 9r mat-2 mat-1 ^TRN (mat-2)

1 July 1982 14-7 FDR 3058

14 BASIC/VM STATEMENTS

19.0

19.0

▶ MAT INPUT ['prompt-string',] mat-1 [,mat-2] ,... [JUJjJIJ[]

Reads data from the terminal and assigns the values to specified matrices, mat-1 through
mat-n . mat (*) indicates that elements may be input until a new line is typed. Matrix is
automatically dimensioned to number of input elements. Default prompt character is !.
unless prompt-string is specified. The type of data input must match the matrix type
(numeric or string).

▶ MAT PRINT mat-1 [,...mat-n]
Prints indicated matrices, mat-1 to mat-n. at terminal. If a matrix name is followed by a colon
instead of a comma, the elements will be separated by spaces instead of column tabs when
printed. If more than one matrix is listed, each begins on a new line. Commas force matrix
elements into columns which are one print zone apart. If .NL. (new line) is typed after each
input, output will occur in row order.

^ MAT READ mat-1 [,...mat-n]
Reads values from a data list and assigns them to the elements of the specified matrix or
matrices. Values are assigned until all matrices are filled, or the data list is exhausted.

▶ MAT READ [*] #unit, mat-1 [,...mat-n]
Reads data items from an external file opened on unit and assigns them to elements of
specified matrix or matrices. Optional
be read before a new record is read.

d * indicates that all data from current record should

▶ MAT WRITE #unit, mat-1 [,...mat-n]
Writes an entire matrix or matrices to a file on the specified unit. If matrix names are
followed by colons instead of commas, elements of the matrices are output one space apart
instead of 21 spaces (one print zone) apart. If two units have been opened, a matrix may be
read from one unit and written to the other. For example:

MAT READ #1, A
MAT WRITE #2, A

▶ NEXT num-var
Defines the end of a loop beginning with a FOR statement. The num-var matches the
variable used with the companion FOR statement.

I C OTO I
^ ON num-expr GOSUB lin-num-1,...lin-num-n [ELSE < qqSUB 1* lin-iram]

Transfers program control to a subroutine at a specified line number depending upon the value
of the numeric expression, num-expr. When a RETURN statement is reached in the subroutine,
control 'returns to the statement following the ON...GOSUB statement.
The value of the numeric expression must be less than or equal to the number of statement
lines listed. Thus, if the value of the expression is 1, control will be transferred to the
statement indicated by lin-num-1. If the value is n, control will be transferred to the
statement indicated by lin-num-n. If the value of the expression is out-of-range, an error
message will be displayed unless the ELSE GOTO or ELSE GOSUB clause is specified.
Control is then transferred to the line number, lin-num, indicated.

* >

FDR 3058 14-8 1 July 1982

BASIC/VM STATEMENTS 14

~

r

▶ ON num-expr GOTO lin-num-1,...lin-num-n [ELSE GOTO in-num]
Transfers program control to one of a list of line numbers (lin-num-1 to lin-num-n)
depending on the value of the numeric expression, num-expr. If the value of num-expr is 1,
control transfers to the first line number given, lin-num-1; if the value is 2. control transfers
to the second line number given, and so forth. The value of num-expr must be less than or
equal to the number of statement lines listed in order for conditional transfer to occur. If the
expression value is out-of-range, an error message is displayed unless an ELSE GOTO
directs control to an alternate line (lin-num) in the program.

▶ ON END #unit GOTO lin-num
Establishes a line number to which program control will transfer when an END OF FILE
occurs on specified unit. This statement does not test for END OF FILE; instead, it
establishes the action to be taken when the end of the last record in a file is reached during
a READ. POSITION, or other I/O operation.

▶ ON ERROR GOTO lin-num
Establishes a line number to which program control will transfer when a run-time error
occurs. The ERR. ERL. and ERR$ (num-expr) functions are associated with the ON ERROR
GOTO statement.

ERR Function set to the code number of the error which activated the
ON ERROR statement

ERL Function set to line number being executed when the error
occurred

ERR$(num-expr) Function which outputs actual text of the error message as
sociated with an error code represented by a numeric ex
pression, num-expr

The ERROR OFF statement cancels all error traps set by ON ERROR GOTO statements. See
ERROR OFF.

▶ ON ERROR rfunit GOTO lin-num
Establishes a statement line to which program control will transfer when an I/O error occurs
on the specified unit, for example, when an invalid number is entered.

▶ ON QUIT GOTO lin-num
Sets up line number to which program control will be transferred when the user hits CTRL-
P or the BREAK key during program execution. QUIT-trapping is turned off by the QUIT
ERROR OFF statement.
▶ P A U S E
Acts as an executable BREAK command. Suspends program process at line where PAUSE
occurs. To resume program, type CONTINUE.

▶ POSITION #unit TO record-number
In direct access files (ASCDA, BINDA). positions the internal record pointer to a specified
record-number in a file on the specified unit. When pointer is positioned past last record,
the ON END #unit GOTO statement is activated (if specified) or the error message. END OF
FILE, is displayed.

1 J a n u a r y 1 9 8 0 1 4 - 9 FDR 3058

14 BASIC/VM STATEMENTS

19.0

▶ POSITION #unit, KEY
S E Q j

[num-expr] = str-expr^
SAME KEY

Positions a file read pointer to a specified record in a MIDAS file. If a secondary key
number, num-expr is not indicated, num-expr =0 is assumed. If SEQ is supplied in lieu of
key, the pointer positions to the next sequential record. SAME KEY positions to datum only
if next key matches current one. POSITION is similar to READ except that no data is
retrieved.

PRINT item-1, num ,...item-n,
(L I N)
]tab[
(SPA '

(num)
(LIN |

(SPA)
Prints formatted information at the terminal. Item-1 to item-n represent numeric and/or
string values.
LIN forces the specified number (num) of carriage return-line feed combinations between items
in the output if num is greater than 0. If num, a numeric expression, is less than 0, it forces that
many line feeds only: if num - 0, only a (CR) is generated.
TAB forces tab to specified column number. SPA forces number (num) of spaces between
items in output.
A comma in a print list causes the terminal to advance to the first character position of the
next print zone. Each print zone consists of 21 character positions. If data will not fit on one
line, it is continued on the next line. If a colon is used instead of a comma, the items are
separated by a single space in the output; if a semicolon is used, no spaces are inserted
between items.
When a numeric expression is printed, if the value of the expression is positive, the sign is
suppressed. If the value of the expression is negative, a minus sign is printed for the sign
character.
If used without parameters, the PRINT statement causes a blank line in the output.

▶ PRINT USING format-string, item-1,...item-n
Generates formatted output according to format characters in format-string, including a
dollar sign, plus or minus signs, decimal points and right-left justification. Item-1 through
item-n represent string or numeric values. Format characters listed in Table 14-2.

FDR 3058 14-10 1 July 1982

BASIC/VM STATEMENTS 14

^

Table 14-2. Numeric Format Field Characters
Sample Using this format Will be
Item: Specification: printed as: Remarks:

POUND SIGN FORMAT SPECIFICATIONS f#l
25 f f f f f 25 Digits right justified in field with

leading blanks.
-30 nm 30 Sign is ignored because item is

positive.
1.95 It Iff Only integers are printed: the

number is rounded off.
598745 t f f t f * * * * * If number is too large for the speci

fied field, asterisks are printed.
PERIOD (DECIMAL POINT) FORMAT SPECIFICATIONS (.)

20 t f f f f . f f 20.00 Positions to right of decimal point
are zero filled.

29.347 f f f f f . t f 29.35 Item is rounded off.
789012 3 4 4 f fl l l . fl * * * * * If number is too large for the speci

fied field asterisks are printed.
COMMA FORMAT SPECIFICATIONS (,)

30.6 +$,111.If +$ 30.60 A space is substituted for comma
when the leading digits are blank.

2000 M i l . 2,000. Comma is printed in indicated posi-
11 c\t\

00033 ++?MH +00,033
UUl l .

Comma is printed when the leading
zeros are not suppressed.

r
r

1 Julv 1982 14-10A FDR 3058

BASIC/VM STATEMENTS 14r

r

-

170.35
1.2
6002.35

20.5

1.01
-1.236

-234.0

20.5
000.01

-234.0
-20

-200

30.512
-30.512

VERTICAL (UP ARROW) FORMAT SPECIFICATIONS (*}
+ # # . # # + 1 7 . 0 3 E + 0 1
+ l f . f f + 1 2 . 0 0 E - 0 1

+ ! # ! . # # + 6 0 0 . 2 3 E + 0 1
Note

If more than four up arrows are used, the corresponding
number of exponent digits will be printed.

PLUS SIGN FORMAT SPECIFICATIONS (+)
+!#.##

+ f f . t f
+!#.##

+11.ff

f fl . fl -
f f f . f f -

f fl . f f -

— . # #

— . I f

$ fl l . f f
$fl f . f f +

+20.50

+ 1.01
- 1.24

* * * * *

Plus sign printed where indicated;
item is positive.
Leading zeros print as blanks.
Minus sign printed when item is
negative.
If number is too large for the speci
fied field, asterisks are printed.

MINUS SIGN FORMAT SPECIFICATIONS (-)
20.50 Sign discarded if item positive.
• 01 Leading zeros immediately to the

left of the decimal point are sup
pressed. Minus sign not printed
when item is positive.
Sign printed as indicated.
Floating minus signs are treated as
digit positions.
Number does not agree with the
format; asterisks are printed.

2.00 Item is positive; minus sign sup
pressed.

DOLLAR SIGN FORMAT SPECIFICATIONS ($)

234.00-
-20.00

* * * * * *

13.20 +$$$$#.#1

$ 30.51
$ 30.51-

+ $13.20

Dollar sign printed.
Negative item; minus sign printed
where indicated.
Floating dollar sign printed im
mediately prior to leftmost signifi
cant digit.

-

-

Table 14-3. String Format Field Characters
POUND SIGN (#) AND ANGLE BRACKETS (< , >) FORMAT SPECIFICATIONS

Sample Using this format Will be
item: specification: printed as: Remarks
T W E LV E > f f | f | f T W E LV E R i g h t - j u s t i fi e d
T W E L V E < f f f * f f T W E L V E L e f t - j u s t i fi e d
G R A N D f f f f G R A N O n l y 4 c h a r a c t e r s w i l l fi t i n t o s p e c i

fied field.

1 January 1980 14-11 FDR 3058

14 BASIC/VM STATEMENTS

▶ QUIT ERROR OFF
Turns off all QUIT-trapping set by ON QUIT GOTO statement. When the CTRL-P or BREAK
key is hit subsequent to this statement, control returnto BASICV command level. (Does not
cause control to return to PRIMOS.)

▶ R A N D O M I Z E
Resets random number generator (RND function) at any point in a program. See Section 10,
RND.

▶ READ var-l,...var-n
Reads numeric or string values from one or more DATA statements within the program,
beginning with the lowest-numbered one. var-1 through var-n are string or numeric
variables separated by commas. Begins accepting values with first item in lowest-numbered
DATA statement. READ is always associated with one or more DATA statements. If the data
items are exhausted before all variables are satisfied, an error message is displayed. The
RESTORE statement may be used to recycle data values within a program.

SEQ
▶ READ [KEY] #unit ,KEY [num-expr]=str-expr

SAME KEY
, str-var

~ >

'

Reads data from specified record in MIDAS file on unit. Data is read into str-var. If READ
KEY is specified, the key value is read into str-var. Num-expr and str-expr are the key
numbers and values, respectively, of the primary or secondary key. SEQ reads next
sequential record. SAME KEY returns datum only if next key matches current one.

▶ READ LINE #unit, str-var
Accepts entireiine of text (including commas and colons) as one data item and puts it in str-
var. Reads from a record in a file previously opened on unit. When the statement has been
executed, the internal record pointer automatically moves to the next record.

▶ READ #unit, var-1 [,...var-n]
Forces program to read a new record from the file previously opened on unit, var-1 through
var-n are values to be read from current record. READ accepts value of the first variable in
the record to which pointer is positioned. Pointer automatically moves to the next record
after indicated values have been read.

▶ READ * #unit, var-1 [,...var-n]
* signals program to continue reading data in current record before new one is read, var-1
through var-n are values to be read from current record and subsequent records, as
necessary to satisfy variables listed.

▶ REM string
Indicates remark to reader; ignored by system. Exclamation point (!) is substituted for REM
when comments are added to executable statements.

▶ REMOVE #unit [, KEY [num-expr] = str-expr] +
Deletes specified key from MIDAS file. If primary key, num-expr = 0, is specified, data
associated with key are removed also. Multiple keys may be deleted with one statement
line; + indicates key specification may be repeated one or more times.

▶ R E P L A C E # u n i t S E G x B Y S E G y ^
Deletes file referenced by indicated segment (SEG x) on segment directory opened on

FDR 3058 1 4 - 1 2 * J a n u a r y 1 9 8 0

BASIC/VM STATEMENTS 14

indicated unit. Pointer at SEG y (segment y) is moved to segment x; old pointer at SEG y is
zeroed.

RESTORE to

r

-

Instructs program to reuse list of data items beginning with first item in lowest-numbered
DATA statement. Numeric data items are reused by specifying jf\ string items, by $. Both
numeric and string items are reused if neither symbol is specified. RESTORE must precede
READ statement indicating data items to be reused.

▶ R E T U R N
Causes control to be returned from GOSUB subroutine. For every GOSUB in a program,
exactly one RETURN must be executed.

▶ REWIND #unit-l [,unit-2,...unit-n]
Repositions record pointer to top of file on specified unit or units.

▶ REWIND funit [,KEY num-expr]
Rewinds pointer to beginning of MIDAS file opened on unit, at column specified by KEY
num-expr. If num-expr =0 or is unspecified, pointer is positioned to primary key (default).

▶ S T O P
Causes termination of program execution. Returns message: STOP AT LINE lin-num.

▶ SUB FORTRAN subr_name (arg-format [, arg-format] ...)
Declares any shared system, non-system or library routine which observes the FORTRAN
calling sequence inside a BASIC/VM program. For details see Section 6 of this guide.

▶ UPDATE #unit, str-expr
Writes string expression, str-expr, to current MIDAS file open on unit. Beware of changing
keys with UPDATE if keys are being stored in record. BASICV does not monitor record
composition and is not aware of changes made to key fields within a record. UPDATE is not
equivalent to a REMOVE followed by an ADD.

▶ WRITE #unit, item-1 [,...item-n]
Writes data specified by item-1 through item-n, (string or numeric variables), into the
current record or output device opened on unit. If no values are specified, a blank line
appears in the output. If a sequential file is closed after a WRITE statement, all subsequent
records in file are truncated.

▶ WRITE ^unit USING format-string, item-1 [,...item-n]

▶ WRITE USING format-string, ^unit, item-1 [,...item-n]
Generates formatted output, determined by format characters in format-string, including tabs,
spaces, and column headings. Output is written to current record or output device opened on
unit, item-1 through item-n are numeric or string variables or expressions. See Tables 14-2 and
14-3 for format characters. If items are separated by colons instead of commas, they are printed
one space apart rather than tabbed to the next print zone. Semicolons cause items to be printed
with no intervening characters or spaces. A format-string may be either a string constant or a
string variable.

18

1 June 1981 14-13 FDR3058

- .

Sample prograi

SAMPLE PROGRAMS
BASIC/VM's flexible control structure and unique string handling capabilities make it
easily adaptable to many applications. The three sample programs presented in this
appendix utilize most of the features discussed earlier in the manual. The first program
enables you to plot and print out a graph. The second can be used to test math skills, and the
third performs simple text formatting.
Sample Program 1:

GRAPHICS PROGRAM

100 1 GRAPH-DRAWING PROGRAM
110 !
120 1 GRAPH PROGRAM
130 !
140 I SET UP ARRAYS
150 DIM C(2) 1 C(l) = # OF HORIZ CHAR, C(2) = # VERT CHAR
160 DIM M(2) 1 M(l) = X MIN, M(2) = X MAX
170 DIM N(2) 1 N(l) = Y MIN, N(2) = Y MAX
180 DIM P(120,120) ! POINT ARRAY, P(I,J) = 1 IF POINT IS DEFINED
190 DIM X(100) 1 X VALUES
200 DIM Y(100) ! Y VALUES
210 !
220 DEF FNB(P$)
230 FNB = VAL(LEFT(P$,INDEX(P$,' ')-l))
240 P$ = RIGHT(P$,INDEX(P$,' ') + 1)
250 FNEND
260 1
270 PRINT 'TYPE INPUT FILE NAME.'
280 INPUT F$
290 DEFINE READ FILE #1 = F$, ASC
300 1
310 ON END #1 GOTO 400
320 Z = 0
330 FOR 1=1 STEP 1 WHILE Z = 0
340 READ #1, X$
350 X$ = CVT$$(X$,24) + ' •
360 X(I) = FNB(X$)
370 Y(I) = FNB(X$)
380 NEXT I
390 1
400 N = I - 1
410 PRINT "DO AUTO SCALING?'
420 INPUT A$
430 1

1 January 1980 A-1 FDR 3058

A SAMPLE PROGRAMS

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640 !
650 !
660 K
670 L
680 A
690 B
700 MAT
710 !
720 FOR
730
740
750

PRINT 'TYPE (# OF HORIZONTAL CHAR.,
INPUT C(l), C(2)
IF A$ = 'YES' THEN DO

M(l) = X(l)
M(2) = X(l)
N(l) = Y(l)
N(2) = Y(l)
FOR I = 2 TO N

OF VERTICAL CHAR.

IF X(I) > M(2) THEN M(2)
IF X(I) < M(l) THEN M(l)
IF Y(I) > N(2) THEN N(2)
IF Y(I) < N(l) THEN N(l)

NEXT I
DOEND

ELSE DO 1 MANUAL SCALING
PRINT 'TYPE MIN X, MAX X'
INPUT M(l),M(2)
PRINT 'TYPE MIN Y, MAX Y'
INPUT N(l), N(2)
DOEND

X(I)
X(I)
Y (I)
Yd)

SET SCALE FACTORS
= (C(l) - 1)/(M(2) - M(l))
= (C(2) - 1)/(N(2) - N(l))
= (M(2) - M(1)*C(1))/(M(2)
= (N(2) -N(1)*C(2))/(N(2) -N(l))

! X SCALE FACTOR
1 Y SCALE FACTOR
- M (l))

P = ZER ! CLEAR POINT ARRAY

I = 1 TO N 1 FILL POINT ARRAY
R = INT(K*X(I) + A + .5)
S = INT(L*Y(I) + B + .5)
IF R>0 AND R<=C(1) AND S>0 AND S<=C(2]

~)

'

THEN P(R,S) = 1

I PRINT THE GRAPH

760 NEXT I
770 1
780
790
800
810
820
830
840
850
860

TO
i

1 STEP -1FOR J = C(2)
X$ = " ! BLANK OUT THE LINE BUFFER

FOR I = 1 TO Cd)
IF P(I,J) = 1 THEN X$ = X$ i * i

IF P(I,J) = 0 THEN X$ = X$ +
NEXT I
PRINT 'I':X$

870 NEXT J
880 X$ = "
890 FOR I = 1 TO Cd) + 2
900 X$ = X$ + '-'
910 NEXT I
920 PRINT X$
930 END

FDR 3058 A-2 1 January 1980

SAMPLE PROGRAMS A

r

r

r

>TYPE XXX
3 4
1 2
2 2
3 3
5 5
8 5

>RUNNH
TYPE INPUT FILE NAME.
1XXX
DO AUTO SCALING?
I YES
TYPE (# OF HORIZONTAL CHAR., # OF VERTICAL CHAR.)
130,10
I * *
I
I
I *
I
I
I *
I
I
j * *

Sample Program 2:

INITIALIZE SYMBOL ARRAY

MATH DRILL PROGRAM

100 I MATH DRILL PROGRAM
101 1
110 DIM S$(3)
120 S$(l) = '+'
130 S$(2) = '-'
140 S§(3) = 'X'
141 I
150 ! DEFINE FUNCTION TO GENERATE RANDCM OPERANDS.
160 DEF FNA(I,J) = INT(I*RND(0) + J)
161 1
170 R = 0 I R -> # ANSWERS CORRECT
180 PRINT 'HELLO, WHO ARE YOU?'
190 INPUT N$
200 PRINT 'OK, ':N$:' I HAVE SOME MATH PROBLEMS FOR YOU.'
210 PRINT 'WHICH TYPE OF PROBLEMS WOULD YOU LIKE?'
220 PRINT '1. ADDITION'
230 PRINT '2. SUBTRACTION'
240 PRINT '3. MULTIPLICATION'
250 PRINT '4. MIXED'
260 PRINT

1 January 1.980 A-3 FDR 3058

A SAMPLE PROGRAMS

270
280
290
300
310
320
330
340
350
360
370
380
381
390
400
402
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

I IS EXIT FLAG.

V IS INDEX INTO SYMBOL ARRAY S$

PRINT "TYPE 1, 2, 3, OR 4'
INPUT T 1 T IS PROBLEM CLASS
PRINT 'HOW MANY SECONDS SHALL
INPUT U
S = VAL(SUB(TIME$,7,9))
S = RND(-1*S)
PRINT 'READY?'
INPUT A$
IF A$ = 'NO' THEN STOP
i

! BEGIN MAJOR LOOP
i

Z = 0
FOR W = 1 STEP 1 WHILE

! W IS PROBLEM # AND
PRINT CHAR(140)
IF T = 1 THEN V = 1 .
IF T = 2 THEN V = 2
IF T = 3 THEN V = 3
IF T = 4 THEN V = FNA(3,1)
B = FNA(9,3)
IF V = 1 THEN DO

A = FNA(9,3)
Q = A + B

DOEND
IF V = 2 THEN DO

A = FNA(B,1)
Q = B - A

DOEND
IF V = 3 THEN DO

A = FNA(9,3)
Q = A*B

DOEND
PRINT B:S$(V):A:'=':
ENTER U,M,C
IF C <> Q THEN DO

IF M >=
PRINT

DOEND
ELSE DO

PRINT 'YOU TOOK TOO LONG, TRY AGAIN.
DOEND

I GIVE YOU TO ANSWER EACH PROBLEM?

SEED RANDOM # GEN

0 THEN DO
'WRONG':N$:'.'

1 THEN PRINT B:S$(V) :A: ' = ' :A+B
2 THEN PRINT B:S$ (V) :A: ' = * :B-A
3 THEN PRINT B:S$(V):A:'=':B*A

IF V =
IF V =
IF V =

DOEND
ELSE DO

D = INT(3*RND(0) + 1)
IF D = 1 THEN PRINT 'RIGHT,':N$:'.'
IF D = 2 THEN PRINT 'VERY GOOD.'
IF D = 3 THEN PRINT N$:», YOU GOT IT!'
IF D > 3 THEN PRINT 'CORRECT!'
PRINT 'YOU TOOK':M:'SECONDS TO GET THE ANSWER.'

FDR 3058 A-4 1 January 1980

SAMPLE PROGRAMS A

r
-

780 R = R + 1
790 DOEND
800 PRINT 'MORE?'
810 INPUT A§
820 IF A$ = 'NO' THEN Z = 1
830 NEXT W
840 !
850 ! END OF MAJOR LOOP
860 !
870 PRINT 'YOU GOT':R:'OUT OF' :W-1: 'CORRECT.'
880 PRINT 'GOOD BYE.'
890 END

>RUNNH
HELLO, WHO ARE YOU?
!LAURA
OK, LAURA I HAVE SOME MATH PROBLEMS FOR YOU.
WHICH TYPE OF PROBLEMS WOULD YOU LIKE?
1. ADDITION
2. SUBTRACTION
3. MULTIPLICATION
4. MIXED
TYPE 1, 2, 3, OR 4
!4
HOW MANY SECONDS SHALL I GIVE YOU TO ANSWER EACH PROBLEM?
! l 0
READY?
!YES
6 + 6 = 12
VERY GOOD.
YOU TOOK 2 SECONDS TO GET THE ANSWER.
MORE?
!YES
4 + 6 = 10
LAURA , YOU GOT IT!
YOU TOOK 1 SECONDS TO GET THE ANSWER.
MORE?
!YES
3 X 6 = 12
WRONG LAURA .
3 X 6 = 18
MORE?
!YES
7 + 4 = 90
WRONG LAURA .
7 + 4 = 11
MORE?
!NO
YOU GOT 2 OUT OF 4 CORRECT.
GOOD BYE.
>QUIT

1 January 1980 A-5 FDR 3058

A SAMPLE PROGRAMS

Sample Program 3:
TEXT HANDLING WITH STRING FUNCTIONS

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

REM FNA$ - SIMPLE TEXT JUSTIFICATION, 12-20-78

REM CALLING SEQUENCE:
REM STRING = FNA$ (INPUT STRING, OUTPUT STRING LENGTH)

DEF FNA$(X$, L)
L2 = LEN(X$)
N = 0 ! N = # OF WORD DELIMITERS (SPACES)

FOR 12 = 1 TO L2 ! COUNT # OF WORDS
IF SUB(X$, 12) = ' ' THEN N = N + 1

NEXT 12
! IF SPACE, INCREMENT

IF N = 0 THEN DO
A2$ = X$ + SPA(L - L2) ! HANDLE ONE WORD CASE

DO END
ELSE DO

51 = INT((L-L2)/N) + 1 ! # SPACES TO PUT BETWIXT EACH WORD
52 = (L-L2) MOD N ! # RESIDUAL SPACES
A2$ = " ! CLEAR OUT RESULT

FOR 12 = 1 TO L2 ! LOOP THRU INPUT STRING
IF SUB(X$, 12) <> ' ' THEN DO ! HIT SPACE?

A2$ = A2$ + SUB(X$, 12) ! NO, NORMAL CHARACTER
DO END
ELSE DO

A2$ = A2$ + SPA(Sl) ! HIT SPACE, PUT IN Sl SPACES.
IF S2 <> 0 THEN DO ! ANY RESIDUAL SPACES?

A2$ = A2$ + ' ' ! YES, PUT A SPACE HERE.
S2 = S2 - 1

DO END
DO END

NEXT 12
DO END
FNA$ = A2$
FN END
REM
REM
REM — This is the main driver for the text justification system
REM
PRINT 'Simple text justification system'
PRINT
INPUT 'Enter input file: ', Fl$
DEFINE READ FILE #1 = Fl$
INPUT 'Margin: ',L9
ON END #1 GOTO 740
PRINT
PRINT

FDR 3058 A-6 1 January 1980

SAMPLE PROGRAMS A

-

! Clear out text input accumulator590 S$ = "
600
610 IF LEN (S$) - 1 > L9 THEN DO ! Have we filled up enough input text ?
620 S$ = SUB(S$, 1, LEN(S$)-1) ! Yes, remove the blank on the end
630 FOR J = L9 STEP (-1) UNTIL SUB(S$,J) = ' ' ! Find the last word
640 NEXT J
650 PRINT FNA$(SUB(S$, 1, J-l), L9) ! Call the justification routine
660 S$ = SUB(S$, J+l, LEN(S$)) + ' ' - Pickup unprocessed input
670 DO END ! And continue.
680 ELSE DO ! Come here when we are ready to do another read.
690 READ LINE #1, Fl$! Get a line of input text.
700 S$ = S$ + CVT$$(F1$, 152) + ' ' ! Concat with the unprocessed text
710 DO END ! And continue.
720 GOTO 610 ! Try again, folks.
730 REM — End of file processing
740 PRINT S$! Print out unprocessed text (at bottom of paraqraph)
7 5 0 P R I N T * r
760 STOP

>TYPE XXX
Four score and seven years ago, our fathers brought forth
to this continent a new nation,
conceived in liberty, and dedicated to the proposition that
all men are created equal.
>RUNNH
Simple text justification system

Enter input file: XXX
Margin: 35

Four score
our fathers
continent a
in l iberty,
proposition
created equal.

and seven years ago,
brought forth to this
new nation, conceived
and dedicated to the
that all men are

STOP AT LINE 760

r
1 January 1980 A-7 FDR 3058

ASCII character set ^

~

The following is a list of the ASCII character set with the corresponding decimal equivalent
and the meaning of each character.

r
-

Decimal
Value ASCII
(with parity on) Character Explanation
128 Null or fill character
129 Start of heading
130 Start of text
131 End of text
132 End of transmission
133 Enquiry134 Acknowledge135 Bell
136 Backspace
137 Horizontal tab
138 Line feed
139 Vertical tab
140 Form feed
141 Carriage return
142 Shift out
143 Shift in
144 Data link escape
145 Device control 1
146 Device control 2
147 Device control 3
148 Device control 4
149 Negative acknowledge
150 Synchronous idle
151 End of transmission block
152 Cancel
153 End of medium
154 Substitute
155 Escape156 File separator
157 Group separator158 Record separator
159 Unit separator
160 Space

1 January 1980 B - l FDR 3058

B ASCII CHARACTER SET

Decimal
value ASCII
(with parity on) character Explanation
161 Exclamation point
162 Double quotation mark
163 Number or pound sign
164 Dollar sign
165 Percent sign
166 Ampersand
167 Apostrophe
168 Opening (left) parenthesis
169 Closing (right) parenthesis
170 Asterisk
171 Plus
172 Comma
173 Hyphen or minus
174 Period or decimal point
175 Forward slant
176 Zero
177 One
178 Two
179 Three
180 Four
181 Five
182 Six
183 Seven
184 Eight
185 Nine
186 Colon
187 Semicolon
188 Left angle bracket (less than)
189 Equal sign
190 Right angle bracket (greater than)
191 Question mark
192 Commercial at sign
193 (193 through 218 are upper case characters)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

FDR 3058
d _ o 1 J a n u a r y 1 980

ASCII CHARACTER SET B

'

~

'

r

Decimal
value
(with parity on)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

ASCII
character

S
T
U
V
w
X
Y
Z
I
/

Explanation

a
b
c
d
e
f
8
h
i
j
k
1
m
n
o
P
q
r
s
t
u
v
w
X

y
z

Opening bracket
Backward slant
Closing bracket
Circumflex or up arrow
Underscore or backarrow
Grave accent
(225 through 250 are lower case characters)

Opening (left) brace
Vertical line
Closing (right) brace
Tilde
Delete

1 January 1980 B-3 FDR 3058

Run-time error codes

~ >

Code Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Message
GOSUBS NESTED TOO DEEP
RETURN WITHOUT GOSUB
EXCESS SUBSCRIPT
TOO FEW SUBSCRIPTS
SUBSCRIPT OUT OF RANGE
ARRAY TOO LARGE
STORAGE SPACE EXCEEDED
BAD 1-0 UNIT
BAD FILE RECORD SIZE
DA RECORD SIZE ERROR
UNDEFINED I-O UNIT
WRITE ON READ ONLY FILE
END OF DATA
END OF FILE
FILE IN USE
NO UFD ATTACHED
DISK FULL
NO RIGHT TO FILE
ILLEGAL FILE NAME
FILE 1-0 ERROR
FILE NOT FOUND
INPUT DATA ERROR
VAL ARG NOT NUMERIC
BAD LINE NUMBER IN ASC LN FILE
ILLEGAL OPERATION ON SEGMENT DIRECTORY
READ AFTER WRITE ON SEQUENTIAL FILE
ILLEGAL OPERATION ON BINARY FILE
UNDEFINED MATRIX
ILLEGAL SEG DIR REFERENCE
ILLEGAL FILE TYPE FOR POSITION
ILLEGAL POSITION RECORD NUMBER
WRITE USING TO NON-ASCII FILE
PRINT USING STRING IN NUMERIC FORMAT
PRINT USING NUMERIC IN STRING FORMAT
PRINT USING FORMAT WITH NO EDIT FIELDS
BAD MARGIN SPECIFIER
MATRIX NOT SQUARE
MISMATCHED DIMENSIONS
OPERAND AND RESULT MUST BE DISTINCT
2 DIMENSIONAL MATRIX REQUIRED
INV MATRIX IS SINGULAR
MOD - SECOND ARGUMENT ZERO

1 January 1980 C-l FDR 3058

C RUN-TIME ERROR CODES

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

EXPONENTIATION - BAD ARGUMENTS
SIN, COS - ARGUMENT RANGE ERROR
TAN - OVERFLOW
ASN, ACS - ARGUMENT RANGE ERROR
EXP - OVERFLOW
EXP - ARGUMENT TOO LARGE
LOG - ARGUMENT < = 0
SORT - ARGUMENT < 0
EXPONENT OVERFLOW, UNDERFLOW
DIVISION BY ZERO
STORE FLOATING ERROR
REAL TO INTEGER CONVERSION ERROR
ON GOTO-GOSUB OVERRANGE ERROR
RECORD NOT FOUND
RECORD LOCKED
RECORD NOT LOCKED
KEY ALREADY EXISTS
SEGMENT FILE IN USE
INCONSISTENT RECORD LENGTH
RECORD FILE FULL
KEY FILE FULL
IMPROPER FILE TYPE
PRIMARY KEY NOT SUPPLIED
ILLEGAL OPERATION ON UNIT 0
FATAL MIDAS ERROR
0 RAISED TO 0 OR A NEGATIVE POWER
CONSTANT ON LEFT SIDE OF ASSIGNMENT STATEMENT
MIDAS CONCURRENCY ERROR
(reserved)
UNKNOWN ARITHMETIC ERROR

FDR 3058 C-2 1 January 1980

Additional
PRIMOS features

~ >

This appendix contains a glossary of useful PRIMOS terms, an introduction to the system
EDITOR, an introduction to command files, and a brief discussion of the TERM command,
with which terminal characteristics can be modified.

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS
The following is a glossary of concepts and conventions basic to Prime computers, the
PRIMOS operating system, and the file system.
binary file: A translation of a source file generated by a language translator (PMA, COBOL,
FTN, RPG). Such files are in the format required as input to the loaders. Also called "object
file".
byte: 8 bits: 1 ASCII character.
condition mechanism: A PRIMOS facility which responds to conditions that would normally
cause program termination. Rather than terminating the program immediately, the condi
tion mechanism calls an on-unit to take some diagnostic or remedial action. A list of
conditions handled by PRIMOS' condition mechanism is given in the Subroutine Reference
Guide.
CPU: Central Processor Unit (the Prime computer proper as distinct from peripheral
devices or main memory).
current directory: A temporary working directory explained in the discussion on Home vs
current directories in Section 2.
directory: A file directory; a special kind of file containing a list of files and/or other
directories, along with information on their characteristics and location. MFDs, UFDs, and
subdirectories (sub-UFDs) are all directories. (Also see segment directory.)
directory name: The file name of a directory.
external command: A PRIMOS command existing as a runfile in the command directory
(CMDNCO). It is invoked by name, and executes in user address space. No system-wide
abbreviations exist for external commands. Users may define abbreviations for external
commands using the ABBREV command.
file: An organized collection of information stored on a disk (or a peripheral storage medium
such as tape). Each file has an identifying label called a filename.
filename: A sequence of 32 or fewer characters which names a file or a directory. Within
any directory, each filename is unique. Directory names and a filename may be combined
into a pathname. Most commands accept a pathname wherever a filename is required.
Filenames may contain only the following characters:

A-Z, 0-9, -#$-.*&
The first character of a filename must not be numeric. On some devices underscore ()
prints as backarrow (<-).
filename conventions: Prefixes indicate various types of files. These conventions are
established by the compilers and loaders, or by common use, and not by PRIMOS itself.

1 J a n u a r y 1 9 8 0 T) _ i FDR 3058

D ADDITIONAL PRIMOS FEATURES

B filename Binary (Object) file
C—filename Command input file
L filename Listing file
M—filename Load map file
O—filename Command output file
PH—filename Phantom command file
filename Source file or text file
*filename SAVED (Executable) R-mode runfile
^filename SAVED (Executable) V-mode runfile

file-unit: A number between 1 and 127 {'177) assigned as a pseudonym to each open file by
PRIMOS. This number may be given in place of a filename in certain commands, such as
CLOSE. PRIMOS-level internal commands require octal values. Each user is guaranteed at
least 16 file units at a time. The maximum number of units that a user may have open
simultaneously varies per installation; the default is 128. PRIMOS always reserves units 0 ^-^
and 127 for its own use. In addition, certain commands or activities use particular unit
numbers by default:
file protection keys: See keys, file protection.
home directory: The user's main working directory, initially the login directory. A dif
ferent directory may be selected with the ATTACH command. See the discussion on Home
vs current directories in Section 2.
identity: The addressing mode plus its associated repertoire of computer instructions.
Programs compiled in 32-R or 64-R mode execute in the R-identity; programs compiled in
64V mode execute in the V-identity. R-identity and V-identity are also called R-mode and V-
mode.
internal command: A command that executes in PRIMOS address space. Does not overwrite
the user memory image. PRIMOS-defined abbreviations exist for external commands.
keys, file protection: Specify file protection, as in the PROTEC command.

0 No access
1 R e a d
2 W r i t e
3 R e a d / Wr i t e
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write
7 All rights

LDEV: Logical disk device number as printed by the command STATUS DISKS.
(See ldisk.)
ldisk: A parameter to be replaced by the logical unit number (octal) of a disk volume. It is
determined when the disk is brought up by a STARTUP or ADDISK command. Printed as
LDEV by STATUS DISKS.
logical disk: A disk volume that has been assigned a logical disk number by the operator or
during system startup.
MFD: The Master File Directory. A special directory that contains the names of the UFDs on
a particular disk or partition. There is one MFD for each logical disk.
mode: An addressing scheme. The mode used determines the construction of the computer
i n s t r u c t i o n s b y a c o m p i l e r o r a s s e m b l e r . (S e e i d e n t i t y .) ^ ^
nodename: Name of system on a network; assigned when local PRIMOS system is built or
configured.

n o 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 u - z

ADDITIONAL PRIMOS FEATURES D

-

r

number representations:
x x x x x D e c i m a l
' x x x x x O c t a l
S x x x x x H e x a d e c i m a l

object file: See binary file.
on-unit: A begin block (in PL/I) or subroutine (in FORTRAN, COBOL, or PL/I) which is
called by the condition mechanism to handle error conditions. PRIMOS has on-units for all
conditions it recognizes. Users may also define on-units within any procedure they write.
User-written on-units take precedence over system ones.
open: Active state of a file-unit. A command or program opens a file-unit in order to read or
write it.
output stream: Output from the computer that would usually be printed at a terminal during
command execution, but which is written to a file if COMOUTPUT command was given.
packname: See volume-name,
page: A block of 1024 16-bit words within a segment (512 words on Prime 300).
partition: A portion or all of a multi-head disk pack. Each partition is treated by PRIMOS as
a separate physical device. Partitions are an integral number of heads in size, offset an even
number of heads from the first head. A volume occupies a partition, and a "partition of a
disk" and a "volume of files" are actually the same thing.
pathname: A multi-part name which uniquely specifies a particular file (or directory)
within a file system tree. A pathname (also called treename) gives a path from the disk
volume, through directory and subdirectories, to a particular file or directory. See the
discussion on Pathnames in Section 2.
PDEV: Physical disk unit number as printed by STATUS DISKS. (See pdisk.)
pdisk: A parameter to be replaced by a physical disk unit number. Needed only for operator
commands.
phantom user: A process running independently of a terminal, under the control of a
command file.
procedure: In FORTRAN, a subroutine or function. In PL/I, any subroutine, function, or
program. (In PL/I, procedures may contain other procedures.) In COBOL, the term usually
refers to one or more related paragraphs or section within the Procedure Division.
Procedures direct the computer to perform a particular operation or a series of operations.
process: A particular program running in a particular address space.
reserved characters: The following characters are reserved by PRIMOS for special uses.
They may not be used as part of PRIMOS command lines.

()[]!{ j ;""?: ~ (delete or rubout key) also: | / + @ '
runfile: Executable version of a program, consisting of the loaded binary file, subroutines
and library entries used by the program, COMMON areas, initial settings, etc. (Created
using LOAD or SEG.)
SEG: Prime's segmented loading utility.
segment: A 65,536-word block of address space.
segment directory: A special form of directory used in direct-access file operations. Not to
be confused with directory, which means file directory.
segno: Segment number.
source file: A file containing programming language statements in the format required by
the appropriate compiler or assembler.
subdirectory: A directory that is in a UFD or another subdirectory.

1 J a n u a r y 1 9 8 0 D - 3 F D R 3 0 5 8

D ADDITIONAL PRIMOS FEATURES

~ >

sub-UFD: Same as subdirectory.
treename: A synonym for pathname.
UFD: A User File Directory, one of the Directories listed in the MFD of a volume. It may be
used as a LOGIN name.
unit: See file-unit.
volume: A self-sufficient unit of disk storage, including an MFD, a disk record availability
table, and associated files and directories. A volume may occupy a complete disk pack or be
a partition within a multi-head disk pack.
volume-name: A sequence of 6 or fewer characters labeling a volume. The name is assigned
during formatting (by MAKE). The STATUS DISKS command uses this name in its DISK
column to identify the disk.
word: As a unit of address space, two bytes or 16 bits.

SETTING TERMINAL CHARACTERISTICS
Terminal characteristics may be set with the TERM command. These characteristics remain
in effect until you reset them or until you logout. The commonly used TERM options are
listed below. Typing TERM with no options returns the full list of TERM options available.
The format is:

TERM options
The options are:

-ERASE character Sets user's choice of erase character in place of the
default,".

-KILL character Sets user's choice of kill character in place of default, ?.
-XOFF Enables X-OFF/X-ON feature, which allows you to halt

terminal output by typing CONTROL-S. Output may be
resumed by typing CONTROL-Q. Also sets terminal to
full duplex mode (default).

-NOXOFF Disables X-OFF/X-ON feature (default).
-DISPLAY Returns list of currently set TERM characters. Also

displays current Duplex, Break and X-ON/X-OFF status.

EDITOR
Prime's text EDITOR can be used to create and edit text files and programs. It has two
modes, INPUT and EDIT. Either a blank line followed by a carriage return, or two CR's in
a row, switches the EDITOR from one mode to the other. EDITOR is handy for preparing
documents, reports, letter and for properly formatting them via the RUNOFF feature of
PRIMOS. It is also useful for creating command files, discussed below. A complete
description of all EDITOR and RUNOFF features can be found in the New User's Guide To
EDITOR and RUNOFF.

Input mode
INPUT mode is used for creating new files or programs or for adding more text to an existing
file. It accepts lines of text that are entered into the system by a CR, as are all PRIMOS
commands. To create a new file or program with the EDITOR, type:

ED
This automatically puts the EDITOR into INPUT mode.

FDR 3058 r j _ 4 1 J a n u a r y 1 9 8 0

ADDITIONAL PRIMOS FEATURES D

r

r

-

r

Edit mode
EDIT mode is used to modify the contents of a file or program file. There are over fifty
commands available for use in EDIT mode. A good summary of these commands is provided
in the PRIMOS Programmer's Companion. These commands allow you to move lines from
one point to another in a file, to delete lines, to load in other files or parts of files, to format
a tile according to your particular needs (using RUNOFF commands) and to make line-
specihc or general changes in vocabulary, terms, etc. For BASIC/VM programmers this is
extremely handy when changing program variables, when moving lines of code, and when
combining several programs.
To modify an existing file, type:

ED filename
The EDITOR opens the file, makes a copy of it in the current working directory and
switches into EDIT mode. All changes made to this "work" file will not be incorporated into
the disk copy until the file is "FILEd", or saved, with the FILE command of the EDITOR
Separate copies of the "work" file and the disk file may be maintained by FILEing the
work file under a name of its own. For example, to save an edited file under a name other

than the original, type FILE, followed by a new filename:
FILE new-filename

Summary of editor commands
Command Funct ion
APPEND Attaches specified text to end of current line.
BOTTOM Positions pointer to bottom of file.
CHANGE/strl/ Replaces string l(strl) with string 2(str2)

str2/
Deletes n lines including the current line.
Copies specified number of lines from work file to another file
and deletes those lines from the work file.
Saves current work file to disk. Takes filename argument if
current work file is not to overwrite disk file copy.
Finds first line below current begining with given string.

INSERT newline Inserts newline following current line, newline becomes cur
rent line.

LOAD filename Copies contents of filename into work file under current line.
LOCATE string Finds first line containing string.
NEXT [n] Moves the pointer n lines. Positive or negative values accepted.
OVERLAY string Overlays given string over current line, starting in

column 1.
Positions the pointer to line number n.
Prints n lines.

DELETE [n]
DUNLOAD

FILE

FIND string

POINT n
PRINT [n]
QUIT

RETYPE string
TOP
UNLOAD

WHERE

Quits out of an EDITOR session to PRIMOS com
mand level.
Deletes current line and replaces it with string.
Repositions pointer to top of file.
Similar to DUNLOAD but does not delete indicated
lines from work file.
Prints current line number.

1 January 1980 D-5 FDR 3058

D ADDITIONAL PRIMOS FEATURES

Using the EDITOR for BASIC programs
The EDITOR can easily be used to write BASIC programs, even though BASIC/VM has its
own 'Editor' facility. The advantage of the PRIMOS EDITOR is the freedom to work and
make changes without having to worry about line numbers and other BASIC constraints.
Programs should be typed in uppercase letters, as only uppercase commands and statements
are accepted by the BASIC compiler. Also all syntax rules, as detailed in Section 4, should
be followed. After a program has been FILEd, it can be numbered for use in the BASIC
subsystem by using the PRIMOS NUMBER command. Full details on this command are
found in The PRIMOS Commands Reference Guide.
The NUMBER command requests the name of the file to be numbered or re- numbered, the
name of the output file, which must differ from the original, the starting number and the
increment value. For example, to number an Editor-created program starting with line
number 10 and continuing in increments of 10, do the following:

OK, slist ex
INPUT A
INPUT B
PRINT A*B
H=A/B
IF H<0 THEN 10
PRINT H
END

O K , n u m b e r < ~ \
INTREENAME, (OTTREENAME, START, INCR,
ex ex3 10 10
OK, slist ex3

10 INPUT A
20 INPUT B
30 PRINT A*B
40 H=A/B
50 IF H<0 THEN 10
60 PRINT H
70 END

COMMAND INPUT FILES (COMINPUT)

pathname [funit]
-CONTINUE
-END

COMINPUT \ .PAUSE
-START
-TTY

The COMINPUT command causes PRIMOS to accept commands and data input from a
specified file rather than from the user's terminal. Command files are usually created with
t h e E D I T O R . ^

filename The name of the file from which input is to be read.
funit The PRIMOS file unit number on which the input file is to be

o p e n e d . I f o m i t t e d , F i l e U n i t 6 i s a s s u m e d . ' ^

n r 1 J a n u a r y 1 9 8 0F D R 3 0 5 8 U _ D

ADDITIONAL PRIMOS FEATURES D

r

r

r

options Specifies control flow. -TTY tells PRIMOS to resume accepting
input from the terminal. A command file should end with CO
-TTY. The other options are detailed in Reference Guide
PRIMOS Commands.

Command input files are especially useful for repetitive processes such as displaying system
information, deleting temporary files, and changing erase and kill characters at LOGIN
time.
BASIC/VM has its own COMINP command, which is similar in function to COMINPUT. The
format and syntax are slightly different, as explained in Section 6.

Note
The COMINPUT command must be specified with at least
one parameter. If CO is specified with a null parameter, the
message: Not Found is printed at the terminal. Note also that
the inclusion of CLOSE ALL in a COMINPUT file closes the
file and causes an error message to be displayed.

COMMAND OUTPUT FILES (COMOUTPUT)
The COMOUTPUT command tells PRIMOS to send a copy of all terminal input and output
to a specified file (called a 'comout' file), as well as (or instead of) to the user's terminal. The
format is:

COMOUTPUT [treename] [option-l]...[option-n]
The options are described below. Logical combinations of options are permissable.

-CONTINUE Continues command output to a file. With the -CONTINUE
option, subsequent terminal output is appended to the file
specified by filename.

-END Stops command output to a file and closes the command output
file unit.

-NTTY Turns off the terminal output, i.e., does not print or display
responses to command lines, including the prompt OK,. Once
-NTTY has been specified, terminal output is not turned on until
-TTY is specified in a subsequent COMOUTPUT command.

-PAUSE Stops command output to filename. However, the command
output file, filename, remains open.

-TTY Turns on the terminal output.
Command output files are useful when the user wants to keep a record of terminal
transactions. PRIMOS opens file unit 127 and writes all command input and output
responses to the file specified by filename.
Opening a COMO file: To open a COMOUT file, type COMO, followed by a filename:

OK, como record

This command line arranges for subsequent terminal output to be written to the file named
RECORD. Commands are echoed, and responses continue to be displayed at the terminal.
The file named RECORD is overwritten if it already exists.
Turning off terminal dislay: To inhibit echoing of any commands typed or responses
displayed on the terminal screen, type:

OK, como -ntty

Terminal output continues to the file named RECORD, but nothing is displayed at the
terminal.

1 J a n u a r y 1 9 8 0 f j _ 7 FDR 3058

D ADDITIONAL PRIMOS FEATURES

Resuming terminal display: To resume display of terminal output, type:

OK, como -tty

Any commands typed at the terminal, as well as system responses, will now be displayed on
the terminal screen. The output continues to be recorded in the COMO file RECORD.
Closing a COMO file: To close a COMO file, use the -E[ND] option:

OK, como -e

The file RECORD is now closed, and no further terminal output is written to the file. Note
that command output files cannot be closed by CLOSE ALL; they must be closed explicitly
by COMO -END, CLOSE unit -number or CLOSE filename. For example, to close RECORD,
you could also issue one of these commands:

OK, close record
OK, close 127

Use the STAT UN command to obtain a list of open file units if you are not sure which ones
are currently open.

FILE UTILITY (FUTIL)
FUTIL is a file utility command for copying, deleting, and listing files and directories. FUTIL
is most often used for copying files and directories from one directory to another. It is also
useful for deleting groups of files, entire directories, segment directories, and MIDAS files.
FUTIL accepts many subcommands, all of which are listed in the Reference Guide, PRIMOS
Commands, or the PRIMOS Programmer's Companion. Only the ones most immediately
useful to BASIC programmers are described in this Appendix.

Invoking FUTIL
To invoke FUTIL, type FUTIL. When ready, FUTIL prints the prompt character > , and
waits for a command string from the user terminal. FUTIL accepts either upper or lowercase
input, except that passwords must be entered exactly as they have been created. (Most other
commands will convert passwords to uppercase before attempting the match. FUTIL does
not.) To abort long operations, such as LISTF, type BREAK; restart FUTIL by typing S 1000.
To use FUTIL, type one of the FUTIL subcommands listed below, followed by a carriage
return, and wait for the prompt character before issuing the next command. The erase (")
and kill (?) characters are supported in both command and subcommand lines.

Copying files and directories
FUTIL provides several commands which allow the user to copy files, directories, or
directory trees from one location to another. These commands, their functions and and
formats are listed below:

COPY Copies files (as many as will fit on line).
TRECPY Copies directory trees.
UFDCPY Copies entire UFD structure (complete with all files).
TO Specifies directory to which file(s) or directories are to be

copied: accepts a pathname. Default is home directory. ^^
FROM Directory from which files or directories are to be copied.

Accepts a pathname. Default is home directory.
The general formats of these comands are:

FDR 3058 r \ _ Q 1 J a n u a r y 1 9 8 0

ADDITIONAL PRIMOS FEATURES D

r

r

COPY pathname [new-name],[pathname new-namel
T R E C P Y p a t h n a m e
UFDCPY

To move files and/or directories from one directory to another, the following general steps
a r e t a k e n : *

1. Invoke FUTIL.
2. Define the FROM directory, unless it is the current directory.
3. Define the TO directory, unless it is the current directory.
4. Define the files, segdirs, etc., to be copied.
5. Indicate new filenames for copied files (optional).

Suppose we want to copy several files from another directory to the current working
directory. The pathname of the files to be copied must be specified. To change the name of
any file being copied, simply specify the old-name, then the new-name. Use a comma to
separate filenames or pairs of filenames being copied. For example:

OK, FUTIL
[FUTIL rev 17.0]
>FROM <1>MARTNE>NAUTILUS
>COPY HITS, MISSES ZEROES
>QUIT
OK,

The files HITS and ZEROES (formerly MISSES) are copied to the current directory. The file
MISSES is renamed ZEROES in the current directory, but its name is not changed in the
original, or FROM, directory. Notice that a TO-directory was not specified. If the TO-
directory is not explicitly indicated, FUTIL assumes it to be the current directory. The
subcommand QUIT, abbreviated "Q", returns the user to PRIMOS command level.

Deleting files and directories
The commands for deleting files, segment directories, MIDAS files, directory trees and
UFDs are:

DELETE Deletes specified files from FROM directory.
TREDEL Deletes specified directory trees or segment directories, includ

ing MIDAS files, from FROM directory.
UFDDEL Deletes entire current UFD and everything in it.

The user must have read, write, delete/truncate access rights to delete any file. The same
general steps outlined above for file copying are followed in file and directory deletion.
The following examples show how segment directories and MIDAS files are deleted with
FUTIL.

OK, futil
[FUTIL rev 17.0]
>from <*>tekman>progs
>tredel sega
> q

In the example above, the segment directory, SEGA, is deleted with the TREDEL option of
FUTIL. Notice that a pathname is given,.indicating that the segment directory is located
under the current directory, (which is represented by the ("* > " symbol), in a sub-UFD
called PROGS. If the segment directory is located in the current directory, no FROM-
directory specification is necessary.

1 J a n u a r y 1 9 8 0 r j _ g
FDR 3058

D ADDITIONAL PRIMOS FEATURES

A MIDAS file can be deleted in the same manner as a segment directory. For example, if
MIDAS.A is a MIDAS file in the current directory, the following dialog represents the
deletion process:

OK, futil
[FUTIL rev 17.0]
>tredel midas.a
>q
OK,

* >

"

n i n 1 J a n u a r y 1 9 8 0
F D R 3 0 5 8 U - i U i

Advanced file handling

~ >

CONTENTS
The information contained in this appendix is intended to supplement that presented in
Section 8. File handling operations such as READs and WRITEs are covered in more detail,
with special attention given to the default ASCII file type. Other topics covered are: access
methods and file properties, altering files, and truncation patterns in each file type. This
information may help programmers decide which file types to use in various data handling
situations.

DATA STORAGE PATTERNS
Each type of file stores data differently. The storage patterns of ASCII and binary files are
described below. Those of SEGDIR and MIDAS files are beyond the scope of this book.
Refer to the Subroutine Reference Guide and the MIDAS Reference Guide, available under
separate cover.

Data storage in ASCII and binary files
All files in BASIC/VM can be generally classified according to file type and access method.
File type refers to the manner in which a file stores data. There are two major data storage
methods: ASCII and Binary.
ASCII: In ASCII files, all data, both numeric and string, are represented in ASCII character
code, packed two characters per 16-bit word. Numeric values entered in decimal character
format are converted to floating-point internal format. When a file is read, the data values
must be re-converted. String values are returned as the string characters which correspond
to the stored ASCII codes. Numeric values are converted from floating-point format to
decimal representation, and are formatted according to any print format conventions
specified, such as, decimal points, dollar signs, and so forth.
The main feature of ASCII files is their ease of inspection. They can be LISTed, or TYPEd
at the terminal. They store data just like terminal output; thus, their record storage patterns
can be easily monitored for data integrity.
Binary: String data are stored in binary files just as they are in ASCII files, that is, in ASCII
code. Numeric data are stored in internal machine format, that is, in four-word floating
point representation. There is no conversion to or from ASCII representation, so complete
data accuracy is retained.
However, binary files cannot be accurately inspected bv the user through LIST, TYPE or ED
(the PRIMOS editor).

Intra-record data storage
Within the general ASCII and binary file groups, files are further subdivided according to
properties like record type, (variable or fixed-length) and access methods. In addition to
these previously mentioned properties, distinctions can be made on the basis of intra-record
data structure.

1 J a n u a r y 1 9 8 0 g _ - ^
FDR 3058

E ADVANCED FILE HANDLING

During file access, information is retrieved from a file one record at a time. Usually, specific
data items must be retrieved from a record during a file READ. Therefore, there must be
some way of internally marking where one item ends and the next one begins within a
record. This is known as intra-record data structure.
Below is a description of the major features of each type of file, with the exception of
SEGDIR and MIDAS features which are dealt with in Section 8. These descriptions are
intended to aid you in selecting the files best suited to your particular data storage and
access requirements.
ASC files: ASCII files are the default file type in BASIC/VM. They store data exactly like
terminal output. Semicolons, commas and colons force data to be written to an ASC file
exactly as they would be output by a similar PRINT statement. Each item written to the file
is separated from the next item by the number of spaces indicated by the delimiter. Thus,
spaces are the actual data delimiters in the intra-record structure of ASC files.

10 DEFINE FILE #1= 'SPACE'
15 READ A,B,C
20 DATA 20,21,22
25 WRITE #1, A,B,C
30 WRITE #1, A;B;C
35 WRITE #1, A:B:C
40 CLOSE #1
45 END
>TYPE SPACE
2 0 2 1 2 2
202122
20 21 22

ASC files have variable-length records. The default size of 60 words can be decreased or
increased as necessary. In cases where items larger than 60 words are being stored, record
size should be enlarged appropriately.
ASCSEP files: ASCSEP files are ASCII sequential files that use commas instead of spaces as
internal data markers. Data written to an ASCSEP file can be read back in the same form as
written. For example, if the following values are written to an ASCSEP file:

12,13,14,15

They will be stored and read back as indicated:

>TYPE SEP
12,13/14,15,
>READ #1,A
>PRINT A
12

It should be noted that string items containing commas will be fragmented when read back
from the file. Commas, both verbatim and inserted, are interpreted as data delimiters. For
example, if the value '$12,000' is written to an ASCSEP file it is stored as:

$12,000,
When read back, the following occurs:

>READ#1, A$
>PRTNT A$
$12

~ >

FDR 3058 E-2 1 January 1980

ADVANCED FILE HANDLING E

r
-

r
r

The commas are interpreted as delimiters in this case. This problem can be remedied by
using an alternate form of the READ statement, READLINE. READLINE accepts the entire
contents of one ASCII record, including commas, semicolons, colons and spaces, as one
datum.
ASCSEP files are accessed sequentially, but they have fixed-length records. Unlike ASCII
direct access files, which also have fixed-length records (discussed below), ASCSEP file
records are not blank-padded on the right to fill out any space not occupied by data. Instead,
the physical end of each record is marked by a carriage return (CR). The delimiters which
influence record structure in ASC default files have no effect in ASCSEP files. Regardless
of whether a WRITE statement is terminated by a comma, semicolon, colon or blank, the
next sequential WRITE statement will write data to the next record.
ASCLN files: ASCLN files are ASCII sequential files with variable-length records and
inserted line numbers. Commas are inserted as delimiters in ASCLN files, just as they are
in ASCSEP files. Every record added to an ASCLN file is preceded by a line number.
Records are numbered in increments of 10, beginning with 10. When values are read back
from the file, line numbers are stripped away, unless a previously-created ASCLN file is re
opened without file-type specification. In this case, the line numbers are returned during
file READs.
The LIN#(unit) function (see Section 10) returns the inserted line number of the current
record. In other words, if the pointer is at the second file record, the LIN#(unit) function
prints the record number as 20. For example:

100 DEFINE FILE #1 = 'LN', ASCLN
110 PRINT 'TOP OF FILE:': LIN#(1)
120 WRITE #1, 'FIRST RECORD'
130 WRITE #1, 'SECOND RECORD'
140 REWIND #1
150 READ #1, A$
160 PRINT LIN#(1):A$
170 READ #1, B$
180 PRINT LIN#(1):B$
190 PRINT 'NOW AT END OF FILE:':LIN#(1)
200 CLOSE #1
210 END
>RUNNH
TOP OF FILE: 0
10 FIRST RECORD
20 SECOND RECORD
NOW AT END OF FILE: 20
>TYPE LN

10 FIRST RECORD,
20 SECOND RECORD,

The first record in the file which contains data has a line number of 10. The second record
has a line number of 20. The top of the file is record 0.
ASCLN files are the only data files which can be edited at BASICV command level. Like a
BASIC/VM program, they can be called to the foreground, LISTed, edited with BASICV
commands and resequenced. ASCLN files are convenient for storing data that must be
frequently updated or modified.

ASCDA files are ASCII direct access files. They have fixed-length records
which are blank-padded to completely fill any record space not filled with data. Thus, all
records in a direct access file are of equal length. Commas are inserted as data delimiters
just as in ASCSEP files. A special file containing pointers to each record in the ASCDA file
is maintained by the system for use in random access to data records.

1 J a n u a r y 1 9 8 0 E - 3 F D R 3 0 5 8

E ADVANCED FILE HANDLING

The intra-record data structure is similar to that of an ASCSEP file. Extra spaces are usually
output at the terminal due to blank-padding. For example:

10 DEFINE FILE #3 = 'DIR', ASCDA
20 WRITE #3, 12,13,14
30 WRITE #3, 123.45
RUNNH
STOP AT LINE 30
XTYPE DIR
12,13,14,

123.45,

As in ASCLN files, the LIN#(unit) function can be used to determine the current location of
a record pointer in a direct access file. The LIN#(unit) function can be used to determine the
actual record number at which the current I/O operation is being performed. LIN#(unit)
returns the first record in the file as 0. The first record in the file can be positioned to by the
statement: POSITION #unit TO 1. However, the LIN# function returns this as record 0.

100 DEFINE FILE #2 = 'LNDA', ASCDA
120 WRITE #2, 'JUPITER'
130 WRITE #2, 'MARS'
140 REWIND #2
150 PRINT "TOP OF FILE:':LIN#(2)
160 READ #2, A$
170 PRINT LIN#(2):A$
180 PRINT
190 READ #2, B$
200 PRINT LIN#(2):B$
210 PRINT 'END OF FILE AT RECORD:':LIN#(2)
220 CLOSE #2
230 END
>RUNNH
TOP OF FILE: 0
1 JUPITER

2 MARS
END OF FILE AT RECORD: 2
>TYPE LNDA
JUPITER,

MARS,
BIN and BINDA files: Binary files of both types have fixed-length records. String data are
stored as in ASCII files, that is, in ASCII code; numeric data are stored in internal machine
format, that is, four-word floating-point representation, ensuring complete data accuracy.
Program execution is also expedited because less translation time is required during
numeric data access. Any portion of a record not filled with data is zeroed out rather than
blank-filled.
Although BIN and BINDA files both have fixed-length records, BIN files are accessed
sequentially, while BINDA files are accessed by the direct access method.
Data storage patterns in binary files cannot be accurately inspected at the terminal. If a
binary file is TYPED or LISTED, the data may or may not be recognizable. Despite the
inspection inconvenience, binary files are extremely useful for scientific computations
requiring complete precision and data accuracy.

FDR 3058 g _ 4 1 J a n u a r y 1 9 8 0

ADVANCED FILE HANDLING E

r

"

ACCESS METHODS
Data files can be accessed by one of four methods: Direct access, Sequential access, MIDAS
and Segment directory (SEGDIR) access. The direct and sequential access methods are
detailed below. MIDAS and SEGDIR protocols are more complex and are covered in detail
in the Subroutine Reference Guide, and in the MIDAS Reference Guide.

Sequential access method (SAM)
In sequential access, files are treated as a series of variable-length records. In sequential
access, a file pointer is maintained to indicate the "current record" (the one that is involved
in the current I/O operation). After each access, the pointer is moved to the next sequential
record, which then becomes the current record. Thus, in order to reach the end of the file,
the pointer must skip through each record in the file. It is not possible to back up to a
previous record in sequential access files, except to return to the top of the file. This is
known as "rewinding" the file pointer.
Sequential files are space-efficient since the records are only as long as the data they
contain. However, random access to a particular record is time-consuming, since all the
records between the current one and the desired one must be read.

Direct access method (DAM)
Files structured for direct access require an additional set of pointers which point to each
record in the file. These pointers are automatically defined and maintained by the system,
so the user needn't worry about them.
Direct access files must have fixed-length records. The record length may be increased or
decreased from the default size of 60 words. The record length information is then stored in
the header of the file for use by the file pointer.
Data retrieval is extremely flexible in direct access files. Any record in the file can be
randomly positioned to by number. Records are numbered consecutively from the top of the
file to the bottom, beginning with number 1. As data are added to the file, the number of
records increases as necessary. Positioning is done internally by the system and involves
counting the number of records (and therefore the number of characters) which must be
bypassed before the desired record is reached. For example, if the record size is set to 40
words, (80 characters) and data from the third record is to be read, the pointer 'calculates'
that 160 characters must be skipped before the third record is reached. When 160 characters
have been bypassed, the pointer is positioned to the beginning of the third record. The
importance of fixed-length records in direct access is readily apparent.

ACCOMMODATING LARGE DATA ITEMS
Occasionally you may find it necessary to put more data in a record than permitted by the
previously defined record size. Each type of file handles this space problem differently, as
described below.

Altering record size in SAM files
Increasing the record size in a default ASCII file allows data items larger than 60 words to
be stored in one record. If a string item in excess of 120 characters is written to a file with
default record length, as much of the item as possible is written to the current record; the
rest is written to the next record. Records are added as needed to accommodate this item.

>DEFINE FILE #1='T1',ASC,4
>WRITE #1,'HARRY G. MUDD'
>TYPE Tl
HARRY G.
MUDD

1 J u n e 1 9 8 1 E - 5 F D R 3 0 5 8

E ADVANCED FILE HANDLING

If the combined length of several numeric items being written to an ASC file exceeds the set
record length, the way they will be stored depends on their individual lengths and on the
delimiters which separate them. This example illustrates several ways in which large data
items can be stored by varying the delimiters. Note that the record size has been set at 6
words.

10 DEFINE FILE #1 = 'PLAIN',6
20 READ A,B,C
30 DATA 12,13456,7800000
40 WRITE #1,A,B,C
45 WRITE #1,A;B;C
50 WRITE #1,A:B:C
55 WRITE #1,A
60 CLOSE #1
65 END
> R U N N H a
>TYPE PLAIN
12
13456
7800000
1213456
7800000
12 13456
7800000
12

Data items will not be truncated when written to an ASC file, even though the results of a
file READ may create this impression.
ASCLN files: ASCII line numbered files have the same properties as ASC default files in
regard to storage patterns. In each ASCLN file record, four character positions are occupied
by the inserted line numbers. This should be kept in mind when setting the record size for
this type of file. Data items which exceed the set record length are treated in the same
manner described earlier.

>define file #1 = 'test', ascln, 5
>write #1, 'lesley'
>close #1
>type test

10 les,

ASCSEP files: ASCII separated files differ from ASC and ASCLN files both in structure and
data storage. Records in an ASCSEP file are fixed-length. Commas are automatically
inserted as data delimiters. Each one takes up one character position in the record. If a data
item too large to fit in a single record is written to an ASCSEP file, it will be truncated.

>DEFINE FILE #1 = 'Sl', ASCSEP, 5
>WRITE #1, "TOTALLY OUTRAGEOUS'
>TYPE Sl
TOTALLY OU

F D R 3 0 5 8 E - 6 1 J u n e 1 9 8 1

ADVANCED FILE HANDLING E

-

-

If several numeric items are written to the same file in a single WRITE statement, the length
of each item relative to the record size will determine whether it will be stored intact or
truncated. If the current record can accommodate only one item, the next item in the list will
be written to the next record. If it is too large to fit into this record, it will be truncated.
Delimiters occurring at the end of a WRITE statement do not affect subsequent WRITE
statements as they do in ASC files.
BIN files: Binary files maintain data quite differently from ASCII files. Although the exact
nature of intra-record data storage cannot be easily determined, the following example
indicates that data items larger than the set record size are not truncated. Instead, they are
stored in a manner which allows entire data items to be retrieved with a single READ, even
if the datum exceeds the set record length.

>DEFINE FILE #1 = 'BINARY*, BIN, 5
>WRITE #1,12345678910.32
>REWIND #1
>READ #1, A
>PRINT A
12345678910.32

Altering record size in DAM files
The method used to retrieve data from a direct access file requires that all the records in the
file have the same length. When records are being added to the file, the record size should
be kept in mind. If data items written to an ASCDA record contain fewer characters than the
maximum set by the record size, the data are padded internally with blanks until the record
is entirely filled. In BINDA files, unused record space is zero-filled. If, on the other hand,
data in excess of the record size are written to a DAM file, one of two things can occur:

• If the current record is empty, and the datum exceeds the record size, the
item is truncated.

• If a series of items, for example, A,B,C$, are included in a single WRITE
statement, and CS does not fit entirely into the remainder of the record, the
pointer moves to the next sequential record and C$ is stored there. If C$ is
larger than a single record, it is truncated.

The following example shows what happens when large items are written to a direct access
file with a record size limited to 16 characters:

10 DEFINE FILE #1 = 'TRZ', ASCDA,8
20 WRITE #1,1234,5678,'MAGNIFICENT'
30 WRITE #1, "I AM EIGHTEEN CHAR1, 123,456
40 REWIND #1
>RUNNH
XCYPE TRZ
1234,5678,
MAGNIFICENT,
I AM EIGHTEEN C,
123,456,

Writing blank lines to a file
If no variables or values are specified with WRITE, a blank record is added to the file. This
causes a blank line to occur in the output when the file is TYPEd. For example:

10 DEFINE FILE #1 = 'BLl'
20 DEFINE FILE #2 = 'BL2', ASCSEP

1 J a n u a r y 1 9 8 0 E - 7 F D R 3 0 5 8

E ADVANCED FILE HANDLING

30 WRITE #1, 12
40 WRITE #2, 12
50 WRITE #1
60 WRITE #2
70 WRITE #1,,13
80 WRITE #2,.13
>RUNNH
>TYPE BL1
12

13
>TYPE BL2
12,

13,

Truncating a file
Data written to a record that already contains data will overwrite existing data. If the file is
CLOSEd immediately subsequent to the overwrite, the file will be truncated. Thus, the
record just written to becomes the last record in the file. For example:

>TYPE ASCSEP
TWAS THE NIGHT BEFORE CHRISTMAS,
AND ALL THROUGH THE HOUSE,
NOT A CREATURE WAS STIRRING,
NOT EVEN A MOUSE.,
>DEFINE FILE #1 = 'ASCSEP', ASCSEP
>READ #1, AS
>PRINT A$
TWAS THE NIGHT BEFORE CHRISTMAS
>WRITE #1, 'AND SANTA WAS BROKE'
>CLOSE #1
>TYPE ASCSEP
TWAS THE NIGHT BEFORE CHRISTMAS,
AND SANTA WAS BROKE,

Beyond this point, the original lines in the file have now .been overwritten or truncated, as
shown above.

READING ASCII FILES
The impact of ASCII file properties on file READs is worth exploring in some detail. These
READ features are applicable only to the default ASCII file type.

Reading default ASCII files
READ results vary with the data delimiters within each record, as explained earlier. The
READ pointer interprets commas as "end-of-data" markers in all file types. Thus, it does not
consider the ASC spacing delimiters "true" delimiters. ASC files are the only ones adversely
affected by this feature.
If several numeric items are written to a file with various delimiters, as shown below:

>DEFINE FILE #1 = 'ASCSEP', ASCSEP
>WRITE #1, 12
>REWIND #1

FDR 3058 g _ g 1 J a n u a r y 1 9 8 0

ADVANCED FILE HANDLING E

r

>READ #1, A
>PRINT A
12
>REWIND #1
>READ H, A$
>PRINT A$
12
>WRITE Hf 'STRINGY'
>REWIND #1
>READ #1,A,B$
>PRINT A, B$
1 2 S T R I N G Y
>REWIND #1
>READ #1,A,B
INPUT DATA ERROR AT LINE 0

>REWIND #1

>READ #1,A
>READ #1,B$
>PRINT B$
STRINGY

The following may result when several READs are performed:

>DEFINE READ FILE #1 = 'SPACE'
>READ #1, A
>PRINT A
202122
>READ #1,B
>PRINT B
202122
>READ #1,A,B,C

,/-^ END OF FILE AT LINE 0I
>REWIND #1
>READ #1,A,B,C
>PRINT A,B,C
2 0 2 1 2 2 2 0 2 1 2 2 2 0 2 1 2 2
>READ #1,A
END OF FILE AT LINE 0

Reading with numeric and string variables
When ASC data items are READ into a string variable, for example, READ #1, AS, all the
values in the record, spaces included, are returned as one datum. The first comma reached
marks the end of the datum; however if there are no verbatim commas in the data a single
string READ will return the entire record as a single datum. For example, if the values 12
13 and 14 are written to an ASC file record, and numeric and string READs are done the
results are as follows:

>DEFINE FILE #1 = 'JUNK'
>WRITE #1, 12,13,14
>REMIND #1

J / a n u a r y 1 9 8 0 E - 9 F D R 3 0 5 8

r
r

E ADVANCED FILE HANDLING

>READ #1,A
>PRINT A
121314
>RE//IND #1
>READ #1, A$
READ #1, A$
>PRINT A$
1 2 1 3 1 4
>TYPE JUNK
1 2 1 3 1 4

All spaces are discarded in a numeric READ because they are not considered numeric in
value. Therefore, all numeric items are concatenated when read into a numeric variable.
A record containing both string and numeric values with no commas between data items,
(commas can be inserted by writing them to the file like this: 12,',',13...) can be read in its
entirety with a single string variable, but not with a single numeric variable. For example:

>DEFINE FILE #1 = 'ASCII', ASC
>WRITE #1, 'SUGAR', 12.00
>WRITE #1, 'FLOUR', 5.00: 'COFFEE'
>REWIND #1
>TYPE ASCII
S U G A R 1 2
F L O U R 5 C O F F E E ^
>READ #1,A
INPUT DATA ERROR AT LINE 0

>READ #1,A$
>PRINT \$
F L O U R 5 C O F F E E
>REtfIND #1
>READ #1,A$,B
INPUT LATA ERROR AT LINE 0

>REWIND #1
>READ #1,A$,B$
>PRINT A$
S U G A R 1 2
>PRINT B$
F L O U R 5 C O F F E E

The INPUT DATA ERROR message indicates that a string value cannot be read into the
numeric variable specified.

Reading other sequential files
Values from a record are READ into the given numeric or string variable(s) specified with
the READ statement. For sequential files, the following READ properties are observed:

• If a record contains numeric data only, "READ #unit, A" returns the first
numeric datum in the record, as delimited by the first comma.

• If a record contains string data only, "READ #unit, A$", reads the first
string value as delimited by the first comma in the record. If a string item
itself contains a comma, it is truncated at the position where the comma

FDR 3058

occurs.

g i g 1 J a n u a r y 1 9 8 0

ADVANCED FILE HANDLING E

r

r

r

-

• If the record contains both string and numeric data, "READ #unit, A",
returns a numeric item only if it appears first in the record: "READ #unit,
A$" returns either numeric or string values, depending on which occurs
first in the record.

• String data can only be read into string variables, for instance, "READ #1,
AS." Numeric data can be read into either numeric or string variables, for
example, the expressions, "READ #1, A" or "READ #1,A$", both return a
numeric value.

The following example deals with numeric and string READs done on an ASCSEP file:
10 DEFINE FILE #1= 'SPACE'
15 READ A,B,C
20 DATA 20,21,22
25 WRITE #1, A,B,C
30 WRITE #1, A;B;C
35 WRITE #1, A:B:C
40 CLOSE #1
45 END
>RUNNH
>TYPE SPACE
2 0 2 - 1 2 2
202122
20 21 22

Summary of READs on sequential files
The following example shows how the properties of sequential files influence the results of
simple file READs. Remember that reading numeric values from a binary file into a string
variable produces strange results. For this reason, binary files have been excluded from this
example.

10 ON ERROR #1 GOTO 260
20 DEFINE FILE #1 = 'ASC
30 DEFINE FILE #2 = 'ASCSEP', ASCSEP
40 DEFINE FILE #3 = 'ASCLN', ASCLN
50 READ A,B,C$
60 DATA 123.45,48,'$100,000'
70 FOR I = 1 TO 3
80 WRITE #1, A,B,C$
90 REWIND #1
100 NEXT I
110 FOR N = 1 TO 3
120 PRINT 'NUMERIC READ FOR FILE ON UNIT #': N
130 PRINT
140 READ #N, A
150 PRINT A
160 REWIND #N
170 PRINT 'STRING READ FOR FILE ON UNIT #': N
180 PRINT
190 READ #N, A$
200 PRINT A$
210 PRINT
220 REWIND #N
230 NEXT N
240 CLOSE #1,2,3

1 J a n u a r y 1 9 8 0 E - l l FDR 3058

E ADVANCED FILE HANDLING

250 GOTO 290
260 PRINT 'ERROR ON UNIT:':N
270 PRINT ERR$(ERR)
280 GOTO 160
290 END
>RUNNH
>TYPE ASC
1 2 3 . 4 5 4 8 $ 1 0 0 , 0 0 0
>TYPE ASCSEP

123.45,48,$100,000,
>TYPE ASCLN

10 123.45,48,$100,000,
>RUNNH
NUMERIC READ FOR FILE ON UNIT # 1

INPUT DATA ERROR
STRING READ FOR FILE ON UNIT # 1

1 2 3 . 4 5 4 8 $ 1 0 0

NUMERIC READ FOR FILE ON UNIT # 2

123.45
STRING READ FOR FILE ON UNIT # 2

123.45

NUMERIC READ FOR FILE ON UNIT # 3

123.45
STRING READ FOR FILE ON UNIT # 3

123.45

The INPUT DATA ERROR message appears because a numeric READ was attempted on an
ASC file record containing both numeric and string data. Since this was expected, an error
trap mechanism was included in the program. The ON ERROR statement (line 10) is further
described in Section 8.

READ* vs. READ

In default ASCII files, the READ* statement is most useful when records do not contain
both numeric and string values. The variables for READing must be carefully chosen to
avoid INPUT DATA ERROR messages. This requires some familiarity with the data being
READ or otherwise manipulated.
Reading numeric values: The example below shows the difference between READ and
READ* statements when used to retrieve numeric values from various sequential files.

10 DEFINE FILE #1= 'ASC*'
20 DEFINE FILE #2 = 'SEP*', ASCSEP
30 DEFINE FILE #3 = 'LN*', ASCLN
40 DEFINE FILE #4 = 'BIN*', BIN
50 REWIND #1,2,3,4
60 READ A,B,C,D,E,F

" >

'

FDR 3058 j 7 _ 1 2 1 J a n u a r y 1 9 8 0

ADVANCED FILE HANDLING E

r
-

* i

70 DATA 10,20,30,40,50,60,70
80 PRINT 'FIRST READ WITHOUT *'
90 PRINT
100 FOR N=l TO 4
110 WRITE #N,A,B,C
120 WRITE #N,D,E,F
130 NEXT N
140 REWIND #1,2,3,4
150 FOR N= 1 TO 4
160 PRINT "THIS IS FILE ON UNIT #': N
170 PRINT 'BEGIN READ WITHOUT *'
180 READ #N,A
190 PRINT A
200 PRINT
210 READ #N,B
220 PRINT B
230 PRINT
240 REWIND #N
250 PRINT 'NOW READ WITH
260 READ * #N,A
270 PRINT A
280 PRINT
290 READ * #N,B
300 PRINT B
310 PRINT
320 REWIND #N
330 PRINT 'END OF READ ON UNIT #':N
340 PRINT
350 NEXT N
360 CLOSE #1,2,3,4
370 PRINT 'END OF TEST'
380 END
>RUNNH
FIRST READ WITHOUT *

THIS IS FILE ON UNIT # 1
BEGIN READ WITHOUT *
102030

405060

NOW READ WITH *
102030

405060

END OF READ ON UNIT # 1

THIS IS FILE ON UNIT # 2
BEGIN READ WITHOUT *
10

40

1 January 1980 E-13 FDR 3058

E ADVANCED FILE HANDLING
= = = = = = — — = - >

NCW READ WITH *
10

20

END OF READ ON UNIT # 2

THIS IS FILE ON UNIT # 3
BEGIN READ WITHOUT *
10

40

NOW READ WITH *
10

20

END OF READ ON UNIT # 3

THIS IS FILE ON UNIT # 4
BEGIN READ WITHOUT *
10

NOW READ WITH *
10

END OF READ ON UNIT # 4

END OF TEST
>TYPE ASC*
1 0 2 0 3 0
4 0 5 0 6 0
>TYPE SEP*
10,20,30,
40,50,60,
>TYPE LN*

10 10,20,30,
20 40,50,60,

Reading string values: The following example DEFINES and WRITEs string data to several
sequential files. Both types of READs, READ and READ*, are done, for comparison, on
various SAM file types.

1 0 D E F I N E F I L E # 1 = ' A S C * ' _
20 DEFINE FILE #2 = 'SEP*', ASCSEP
30 DEFINE FILE #3 = 'LN*', ASCLN
40 DEFINE FILE #4 = 'BIN*', BIN
50 REWIND #1,2,3,4
60 READ A$,B$,C$,D$

FDR 3058 J 7 - 1 4 1 J a n u a r y 1 9 8 0

ADVANCED FILE HANDLING E

r

-

r
-

70 DATA 'RED','WHITE','BLUE','PURPLE'
80 PRINT 'FIRST READ WITHOUT *'
85 PRINT
95 FOR N=l TO 4
100 WRITE #N,A$,B$
105 WRITE #N,C$,D$
110 NEXT N
120 REWIND #1,2,3,4
135 FOR N= 1 TO 4
136 PRINT 'THIS IS FILE ON UNIT #': N
137 PRINT 'BEGIN READ WITHOUT *'
140 READ #N,A$
145 PRINT A$
150 PRINT
155 READ #N,B$
160 PRINT B$
162 PRINT
165 REWIND #N
166 PRINT 'NOW READ WITH *'
170 READ * #N, A$
175 PRINT A$
178 PRINT
180 READ * #N,B$
185 PRINT B$
190 PRINT
200 REWIND #N
201 PRINT 'END OF READ ON UNIT #':N
202 PRINT
205 NEXT N
220 CLOSE #1,2,3,4
230 PRINT 'END OF TEST1
240 END
>RUNNH
FIRST READ WITHOUT *

THIS IS FILE ON UNIT # 1
BEGIN READ WITHOUT *
RED

BLUE

NOW READ WITH *
RED

BLUE

WHITE

PURPLE

WHITE

PURPLE

END OF READ ON UNIT # 1

THIS IS FILE ON UNIT # 2
BEGIN READ WITHOUT *
RED

BLUE

1 January 1980 E-15 FDR 3058

E ADVANCED FILE HANDLING

NOW READ WITH *
RED

WHITE

END OF READ ON UNIT # 2

THIS IS FILE ON UNIT # 3
BEGIN READ WITHOUT *
RED

BLUE

NCW READ WITH *
RED

WHITE

END OF READ ON UNIT # 3

THIS IS FILE ON UNIT # 4
BEGIN READ WITHOUT *
RED

BLUE

NCW READ WITH *
RED

WHITE

END OF READ ON UNIT # 4

END OF TEST
>TYPE ASC*
R E D W H I T E
B L U E P U R P L E
>TYPE SEP*
RED,WHITE,
BLUE,PURPLE,
>TYPE LN*

10 RED,WHITE,
20 BLUE,PURPLE,

p i r 1 J a n u a r y 1 9 8 0F D R 3 0 5 8 C j - i D

Loading non-system
library routines

r

LOADING NON-SYSTEM LIBRARY ROUTINES WITH BASIC/VM

Non-system library FORTRAN routi nes can be loaded with BASIC/VM. In the interest of system
security, we recommend that only your System Administrator or supervisor have write access
or authorize write access to others - for using the files and directories that load the routines.
There are circumstances where security at your site would be very important to the operation of
the system; for example, in a school environment. For more information regarding the role and
duties of the System Administrator, see the System Administrator's Guide.
Load non-system library routines with the following six-step procedure:

r

1. Include the routine's source file in sub-UFD BASICVSROSOURCE.

2. Edit BASICVSROSOURCE>FTNINT.USER.FTN to include the routine
name.

3. Edit BASICVSRC>BASICV.BUILD.CPL to include loading of routine.

4. Run BASICVSROBASICV.BUILD.CPL to load BASICV.

5. Run BASICV>BASICV.INSTALL.COMI to install BASICV.

6. Run BASICV>BASICV.SHARE.COMI to share BASICV.

Note
If you are loading subroutines from the sys tern library V APP LB. Steps 1 and 3 are
not necessary.

r
1 July 1982 F-l FDR 3058

F LOADING NON-SYSTEM LIBRARY ROUTINES

Example
A non-system library (user-written) FORTRAN routine named XYZ is to be called by a BASIC/
VM program. The routine XYZ looks like this:

C XYZ.FTN - WRITTEN BY USER 'JD' (JOHN DOE) - 3/28/82
C THIS ROUTINE SHOULD BE LOADED WITH THE BASIC COMPILER
C TO ALLOW ANYONE TO USE IT.
C
C XYZ FORTRAN SUBROUTINE
C
C ROUTINE PRINTS VALUE OF ARGUMENT AND MODIFIES ARGUMENT BY TRIPLING IT
C

SUBROUTINE XYZ(A)

INTEGER*2 A
WRITE(1,100) A

100 FORMAT('VALUE OF ARGUMENT PASSED : 'fFl5.5)
C

A=A*3
C

RETURN
END

The sample routine XYZ is to be declared and called from a BASIC/VM program that looks like
this:

10 1 THE FOLLOWING BASIC/VM PROGRAM SERVES AS A SAMPLE SESSION
20 ! TO DEMONSTRATE FTN CALL FUNCTIONALITY.
30 1
40 ! THE SECOND LINE IS OUTPUT BY THE FORTRAN USER-DEFINED SUBROUTINE
50 ! 'XYZ' AND 'XYZ1 REQUIRES AN ARGUMENT OF TYPE INTEGER*2. IT RETURNS
60 ! AN ARGUMENT THREE TIMES ITS ORIGINAL VALUE.
70 !
80 SUB FORTRAN XYZ (INT)
90 A = 123
100 PRINT 'VALUE OF ARGUMENT TO BE PASSED : ';A
1 1 0 C A L L X Y Z (A) - ^
120 PRINT 'VALUE OF ARGUMENT RETURNED : ';A
130 END

Follow the six-step procedure. Under most circumstances, it is better not to do Steps 1 through 5
from the supervisor terminal because these steps are very time-consuming - especially Steps 4
and 5 - and they can tie up other operations performed from the supervisor terminal. However,
you must have write access to the files and directories, no matter what terminal you use. Step 6
can only be done from the supervisor terminal.

Using the sample routine and BASIC/VM program:

1. Include the routine's source file as XYZ.FTN in the sub-UFD
BASICVSRO SOURCE.

FDR 3058

2. In BASICVSRC>SOURCE>FTNINT.USER.FTN, after the statement
EXTERNAL SAMPLE, insert the statement EXTERNAL XYZ. Also,
after the statement:

IF (N AMEQ$ (NAME,LEN,'SAMPLE',6)) FTNINT = LOC(SAMPLE)

F _ 2 i J u l y 1 9 8 2

LOADING NON-SYSTEM LIBRARY ROUTINES F

*

insert the statement:
IF (NAMEQS (NAME.LEN/XYZ',3)) FTNINT = LOC(XYZ)

Your editing session for Step 2 would look something like this:

ed ftnint.user.ftn
EDIT
locate EXTERNAL SAMPLE

EXTERNAL SAMPLE /* NOTE THAT 'SAMPLE' IS SAMPLE ROUTINE NAME*/
insert EXTERNAL XYZ
locate NAMEQ

IF (NAMEQ$(NAME,LEN,'SAMPLE',6)) FTNINT = LOC(SAMPLE)
insert IF (NAMEQ$(NAME,LEN,'XYZ',3)) FTNINT = LOC(XYZ)
fi l e

Note that the fourth argument in the function (3) is the length of the
subroutine's name in bvtes (characters).

3. In BASICVSROBASICV.BUILD.CPL, after the line:
FTN SAMPLE -64V -XREFS -SPO -DCLVAR -PBECB -LIST NO

insert the line:
FTN XYZ -64V -XREFS -SPO -DCLVAR -PBECB -LIST NO

Your editing session for Step 3 would look something like this:

ed basicv.build.cpl
EDIT
locate SAMPLE
FTN SAMPLE -64V -XREFS -SPO -DCLVAR -PBECB -LIST NO
insert FTN XYZ -64V -XREFS -SPO -DCLVAR -PBECB -LIST NO
fi l e

FORTRAN compile options can be varied.

4. Run BASICVSRC BASICV.BUILD.CPL with the RESUME command.

5. Run BASICV>BASICV.INSTALL.COMI with the COMINPUT command.

6. Run BASICV>BASICV.SHARK.COMI with the COMINPUT command.
(This step can only be done from the supervisor terminal.)

Here is the output of the sample BASIC/VM program, which calls the sample routine XYZ:

>RUNNH
VALUE OF ARGUMENT TO BE PASSED : 123
VALUE OF ARGUMENT PASSED : 123.00000
VALUE OF ARGUMENT RETURNED : 369

1 J u l y 1 9 8 2 p _ 3 FDR 3058

INDEX X

A

r
*

S (hexadecimal number) D-3
(#) formal character 5-8
($) format character 5-10
(+) format character 5-9
(.) format character 5 9
(-) format character 5-9
(.) format character 5-8
(<) format character 5-10
(>) format character 5-10
(") format character 5-9
Access methods:

DAM E-5
direct E-5
direct (DAM) 8-4
in BASIC/VM 8-4
MIDAS 8-22
random 8-13
SAM E-5
SEGDIR 8-16
sequential E-5
sequential (SAM) 8-4

Access, file, remote 3-12, 3-13
Accessing BASIC/VM 3-1
Accessing PRIMOS 2-8
ADD statement 14-1
Addition operator 11-2
ALTER command (BASIC/VM)

7-2. 13-1
ALTER command mode 7-2
ALTER subcommands 7-2
AND operator 11-6
Angle brackets, using 2-1
Arithmetic operators 4-4
Arrays:

declaring 9-2
default dimensions 9-2
dimensioning 9-1
elements of 9-1-9-2
elements, referencing 4-3
local 10-15
naming 4-3
numeric 9-1
siring 9-2
vs. matrices 9-1

ASC files:
changing record size E-6
data storage E-2
delimiters 8-6
reading 8-8
reading entire records 8-9
structure of 8-6
writing to 8-6

ASCDA files:
data storage E-3, E-4
LIN# E-4

ASCII character codes, using 11-4
ASCII character set B-l-B-3
ASCII files:

accessing E-5
changing record size E-5
data storage E-l-E-5
reading E-8-E-16
record structure E-l-E-5

ASCLN files:
changing record size E-6

LIN# E-3
reading E-ll-E-12

ASCSEP files:
changing record size E-6
data storage E-2, E-3
delimiters E-2, E-3

Assigning file units 8-2
Assigning passwords 2-9
Assignment statement 5-1
Assignment, multiple 5-1, 5-2
ATTACH command (BASIC/VM)

3-12.13-1
ATTACH command (PRIMOS) 2-9.

12-1
Audience 1-1
AVAIL command (PRIMOS) 12-1

B
Backslash (/) 2-2
BASIC/VM error codes C-l-C-2
BASIC/VM subsystem:

editor 7-1
operating modes 3-10

BASIC/VM commands:
ALTER 7-2, 13-1
ATTACH 13-1
BREAK 7-4, 13-2
CATALOG 3-3, 13-2
CLEAR 13-2
COMINP 13-2
COMPILE 3-4, 13-2
CONTINUE 7-5, 13-3
debugging 7-4
DELETE 7-1. 13-3
editing 7-1
EXECUTE 3-5. 13-3
EXTRACT 7-1, 13-3
FILE 13-3
LBPS 13-3
LENGTH 7-4. 13-4
lis! 4-7-4-8
LIST [NHl 3-4. 13-4
LOAD 3-8. 13-4
NEW 3-1, 13-4
OLD 3-1. 13-4
PERF 7-10, 13-4
PURGE 3-9, 13-5
QUIT 3-9, 13-5
RENAME 3-9, 13-5
RESEQUENCE 13-5
routine 3-2
RUN[NH] 3-5.1-5
syntax 4-6
TRACE 7-6, 13-5
TYPE 3-4. 13-5

BASIC/VM statements:
COMINP 14-2
ADD 14-1
CHAIN 6-14, 14-1
CHANGE 9-4, 14-1
CLOSE 8-12. 14-2
CNAME 14-2
COMINP 6-16
conventions in 14-1
DA't'A 5-2, 14-2

DEF 10-9
DEF FN 14-2
DEFINE SCRATCH FILE 14-2
DEFINE 8-2
DEFINE FILE 14-2
DIM 9-1, 14-3
DO-DOEND 6-6. 14-3
ELSE DO 14-3
END 6-2, 14-3
ENTER 5-4. 5-5
ENTER [#] 14-3
ERROR OFF 14-3
FNEND 10-9, 14-2
FOR 6-3, 14-3
FOR-UNTIL 14-3
FOR-WHILE 14-3
GOSUB 1405. 6-1
GOTO 6-1, 14-5
I/O 5-1
IF 6-4. 14-5
INPUT 5-4, 14-6
INPUTLINE 5-4. 14-6
LET 5-1. 14-6
list of 4-8-4-11
LOCAL 10-15, 14-6
MARGIN 5-12, 14-7
MAT 9-7
MAT INPUT 14-8
MAT options 14-7-14-8
MAT PRINT 14-8
MAT READ ['] 14-8
MAT WRITE 14-8
MATINPUT 9-6
MATINPUT* 9-6
MATREAD 9-5
MATREAD ['] 9-14
MATWRITE 9-14
NEXT 6-3. 14-8
ON-END 8-11
ON-END GOTO 14-9
ON-ERROR 7-7
ON-ERROR GOTO 14-9
ON-GOSUB 6-7, 14-8
ON-GOTO 6-7. 14-8
ON-QUIT GOTO 14-9
PAUSE 7-5, 14-9
POSITION 8-13. 14-9
PRINT 5-6
PRINT USING 5-8, 14-10
PRINT [options] 14-10
QUIT ERROR OFF 14-12
RANDOMIZE 10-4. 14-12
READ 5-2,8-8
READ KEY 8-23
READ LINE 14-12
READ [KEY] 14-12
READ' 8-8
READLINE 8-9
READ ['J 14-12
REM 14-12
REMOVE 8-24. 14-12
REPLACE 8-18
REPLACE 14-12
RESTORE 5-2, 14-13
RETURN 14-13
REWIND 8-7

1 lonunry 1980 X - l FDR 3058

X INDEX

REWIND [KEY] 14-13
STOP 6-2, 14-13
summary of 14-1-14-13
syntax 4-6
UPDATE 8-24, 14-13
WRITE 14-13
WRITE USING 14-13, 8-6

BASIC/VM:
accessing 3-1
command list 4-7
comments in 4-7
constants in 4-
elements of 4-1
expressions in 4-1
features 1-1
leaving 3-9
numeric data in 4-1
operands in 4-1
operators in 4-4
overview 1-1. 1-4
prompt 3-1
prompt character 3-1
statement list 4-8
string data in 4-2
variables in 4-2

BASICV command (PRIMOS) 3-1.
12-1, 3-10

BIN files:
changing record size E-7
storage E-4

Binary file, definition D-l
Binary operators 4-4
Binary files:

accessing E-4
data storage E-1
lisling E-4

Blocks:
DO-DOEND 6-6
DO-ELSEDO-DOEND 6-6
ON -GOSU B- EI .SE-GOTO 6-8
ON-GOTO-ELSE-GOTO 6-7

Branching:
DO-DOEND blocks 6-6
inside program 6-4
subroutine, conditional 6-8
to external programs 6-14

BREAK command (BASIC/VM)
7-4, 13-2

BREAK interrupts 6-12
BREAK key 2-2
Breakpoints, setting 7-4
Byte, definition D-l

Calculating subscripts 5-2
Calculator mode 3-10
Caret (") 2-2
Case conversions 10-9
CATALOG command (BASIC/VM)
3-3, 1-2

CHAIN statement 6-14, 14-1
CHANGE statement 9-4. 14-1
Changing filenames 2-12
Changing kill and erase

characters D-4

FDR 3058

Changing KILL, ERASE characters
3-2

Changing output line length 5-12
Changing terminal characteristics

D-4
Character sel, ASCII B-l-B-3
Characters, ASCII codes of. using

11-4
Characters, PRINT USING 5-8
Characters, special 14-10
Characters:

(>) BASIC prompt 3-1
backslash 2-2
caret 2-2
CTRL-P 2-2
CTRL-Q 2-2
CTRL-S 2-2
double-quote 2-2
ERASE 2-2
KILL 2-2
question mark 2-2
special 2-2
terminal 2-2
underscore 2-2

CLEAR command (BASIC/VM) 13-2
CLOSE command (PRIMOS) 12-1
CLOSE statement 8-12, 14-2
CNAME command (PRIMOS) 2-1,

12-1
CNAME statement 14-2
Codes of ASCII characters

B-l-B-3
Codes, errors of 7-7
Codes, run-time error C-l-C-2
COL modifier 5-6
Column separators 5-6
Combining programs 3-8
COMINP command (BASIC/VM)

13-2
COMINP command, BASIC/VM

D-6
COMINP statement 6-16, 14-2
COMINPUT command 12-1
COMINPUT command (PRIMOS)

6-16
Command files (BASIC) 6-15
Command files, PRIMOS D-6
Command input files D-6
Command line, spaces in 2-1
Command mode 3-11
Command output files D-7
Commas. ASCSEP files E-2
Comments in BASIC/VM 4-7
COMO files (PRIMOS) D-7-D-8
COMOUTPUT command

(PRIMOS) 12-2
COMOUTPUT command, PRIMOS

D-7
COMPILE command (BASIC/VM)

3-4, 13-2
CONCAT command (PRIMOS)

2-15
Concatenation 11-3
Concepts. PRIMOS D-l-D-4
Condition mechanism D-l
Condition mechanism (PRIMOS)

X-2

7-9
Conditional program control 6-2
Constants:

literals 4-2
numeric 4-1
string 4-2

CONTINUE command (BASIC/VM)
7-5, 13-3

CONTROL (CTRL) key 2-2
Control statements 6-1
Control transfer, external 6-14
Conventions. BASIC/VM

statements 14-1
Conventions, filename D-l—D-2
Converting strings to arrays 9-4
Converting upper-to-lower case

10-7
COPY D-9
Copying files 2-13. D-8-D-10
Correcting errors (BASIC/VM) 3-2
CPU, definition D-l
CREATE command (PRIMOS) 2-1
Creating directories 2-10
Creating files in BASIC/VM 3-1
Creating segment directories 8-15
CREATK. ref. 8-20
CREATK, using 8-25
CTRL-P interrupts 6-12
CTRL-P. key 2-2
CTRL-Q key 2-2
CTRL-S key 2-2
Current directory 2-7
Current directory, definition D-l
Current disk 2-7
Cursor control functions 10-16
Cursor positioning 10-16
CVTSS function masks 10-8
CV'TSS function, using 10-7

D
DAM files:

changing record size E-7
closing 8-15
1.1 N# 8-13
opening 8-12
reading 8-14
statements 8-12
trapping errors in 8-14
writing data to 8-13

DATA statement 14-2
DATA statement (BASIC/M) 5-2
Data-file, definition 3-2
Data:

between programs 5-1
delimiters E-2-E-4
formatting 5-8-5-13
in programs 5-1
input from terminal 5-3
input statements 5-1
lisls 5-2
managing large items E-5
numeric, reading E-9-E-11
output statements 5-t, 5-5
reading 5-2
reading into matrix 9-5

~ >

'

(January 1980

INDEX X

r

recycling 5-3
restoring in program 5-3
storage patterns E-1
string, reading E-9-E-11
limed input 5-4, 5-5
truncation of E-8

Debugging 7-1
Debugging commands 7-4
Decimal character codes B-l-B-3
DEI-' FN statement 14-2
DEF statement 10-9
Defaul I printing 5-6
Default record size E-6
Default STEP size 14-4
DEFINE FILE statement 14-2
DEFINE SCRATCH FILE statement
14-2

DEFINE statement 8-2
Defining functions 10-9
DEL key 2-2
DELETE command (BASIC/VM)
7-1. 13-3

DELETE command (PRIMOS) 2-10.
12-2

Deleting directories 2-10
Deleting files 2-15, D-8-D-10
Deleting lines 7-1
Deleting MIDAS files 8-25
Delimiters. ACSII files, in E-2,

E-3
Description, BASIC/VM of l-i
DIM statemenl 1-1-3
DIM statement (BASIC/VM) 9-1
Dimensions, arrays 9-2
Direct access method 8-4
Directories, copying D-8-D-10
Directories, deleting D-8-D-10
Directories, remote 3-12
Directory name, definition D-]
Directory, current, definitions D-1
Directory, definition D-I
Directory, home, definition D-2
Directory, segment, definition D-3
Directory, user file, definition D-4
Directory:

attaching lo 2-7
creating 2-10
current 2-7
deleting 2-10
examining 2-10
home 2-7
LOGIN 2-7
operations on 2-9
password 2-7
working 2-7

Disk see also device
Disk, current 2-7
Disk, physical, definition D-3
Division operator 11-2
DO-DOEND blocks 6-6
DO-DOEND statements

(BASIC/VM) 14-3
Dollar sign (S). using 5-10
Double-quote (") 2-2

Edit mode. EDITOR D-4
Editing programs 7-1
Editing, in BASIC/VM 3-6
Editing:

in UASIC/VM 7-1
program lines 7-2
with ALTER 7-2

EDITOR commands, summary
D-5

EDITOR. PRIMOS D-4
EDITOR, PRIMOS. for BASIC/VM

programs D-6
Elements of BASIC/VM 4-1
ELSE DO statemenl 14-3
End of file 8-11
END statement 6-2. 14-3
End-of-data markers E-8
ENTER statement 5-4. 5-5
ENTER!*] statement 1-3
EOF. handling 8-11
ERASE character 2-2
ERASE character, changing 3-2
ERL function 7-8
ERR fund ion 7-8
ERRS function 7-8
Error codes 7-7. C-l-C-2
ERROR OFF statement 14-3
Error traps 7-7
Errors:

checking for 3-5
execution 3-5
logic 3-5
run-time 3-5
syntax 3-5
trapping, in files 8-11

Evaluating logical expressions
11-6

Evaluating string expressions
11-4, 11-5

Examining directory contents 3-3
Examples, conventions in 2-2
EXECUTE command (BASIC/VM)

3-5. 13-3
Execution error codes C-l-C-2
Execution errors 3-5
Execution, terminating 6-2
Exiting BASICV 3-9
Exponential notation 4-2
Exponentiation 11-2
Expressions:

arithmetic 4-5
defining 4-5
evaluating 4-5
evaluation of 11-1
logical 4-5. 11-6, 11-7
numeric M-l-li-3
priority list II — I
relational 4-5, 11—3—11—5
relational, string 11-4. 11-5
siring 11-3
types of 4-5

External programs, chaining fo 6-14
EXTRACT command (BASIC/VM)

13-3
EXTRACT command

(BNASIC/VM) 7-1
Extracting lines 7-1

Features. BASIC/VM of l-l
Fields, formatting 5-8-5-13
FILE command (BASIC/VM) 3-4,

13-3
File proteclion keys, definition

D-2
File system, using, 2-4
File lype-codes 14-4
File unils. assigning 8-2
File, binary, definition D-l
File, object, definition D-3
File, source, definition D-3
Filename 2-4
Filenames:

changing 2-12
Files (BASIC/VM):

access methods 8-4
accessing 3-12
ASCDA E-3. E-4
ASCII E-l-E-5
ASCLN E-3
ASCSEP E-2. E-3
binary E-1
changing record size E-5-E-8
closing 8-12
command 6-15
DAM 8-12
data 3-2
defining 8-2
deleting 3-9
delimiters E-2, E-3
direct access E-3. E-4
foreground 3-1
foreground, listing 3-4
handling 8-1
matrices in 9-14
MIDAS 8-20
naming 8-2
non-foreground, listing 3-4
old 3-1
opening 8-1
operations on 8-1
pointers in 8-7
positioning 8-13
program 3-2
purging 3-9
random access 8-13
reaching EOF 8—11
record-size 8-2
remote 3-12
renaming 3-9
SAM 8-5
saving 3-4
SCRATCH 8-3
segment directories 8-15
trapping errors in 8-11
truncating E8

iJanuary 1980 X-3 FDR 3058

X INDEX

types of 8-1
writing to 8-6

Files (PRIMOS):
concatenating 2-15
copying 2-13, D-8-D-10
deleting 2-15, D-8-D-10
listing contents of 2-13
naming 2-4
printing 2-13
protecting 2-16
size 2-12
types in PRIMOS 2-6

FN naming convention 10-9
FNEND statement 10-9, 14-2
FNZ9S control function 10-16
FOR statement 6-3, 14-3
FOR-UNTIL statement 14-3
Forcing call-by-value 10-12
Foreground file, definition 3-1
Foreground file, listing 3-3
Format characters, numeric 14-10,

14-11
Format characters, string 14-11
Format characters:

(#) 5-10. 5-8
($) 5-10
(+) 5-9
(,) 5-9
(-) 5-9.5-10
(.) 5-8
(<) 5-10
(>) 5-10, 5-11
(') 5-9
list 5-8

Formatting, numeric items
5-8-5-10

Formatting, string items 5-10-5-11
Functions:

call-by-reference 10-11
call-by-value 10-11
defining 4-4, 10-11
FNZ9S 10-16
forcing call-by-value 10-12
in BASIC/VM 10-1
I N'T 10-1
LIN* 8-13, E-3
list 10-2
naming 4-4
numeric 4-4, 10-1
program control, and 10-13
recursive 10-14
siring 4-4, 10-6
string, using 10-6
system 10-1
user-defined 10-9

FUTIL (PRIMOS) D-8-D-10
FUTIL options:

COPY D-8, D-9
DELETE D-9
FROM D-8, D-9
TO D-8, D-9
TREDEL D-9, D-10
UFDCOPY D-8. D-9
UFDDEL D-9

FUTIL, using 8-19, 8-25

Generating random numbers 10-3
Glossary, PRIMOS terms D-l-D-4
GOSUB statement 6-1. 14-5
GOTO statemenl 6-1, 14-5

H
Handling files 8-1
HIST option. PERF 7-10
Home directory 2-7
Home directory, definition D-2

I
IF statement 6-4, 14-5
IF structures:

IF-THEN 6-5, 14-5
IF-THEN-DO 14-6
IF-THEN-ELSE 6-6. 14-5
IF-THEN-GOSUB 6-5
IF-THEN-GOTO 6-5, 14-6

Immediate mode 3-11
Input from terminal 5-3
Inpute mode, EDITOR D-4
INPUT statement 5-4, 14-6
Input, data 5-1
Input, timing 5-4, 5-5
INPUTLINE statement 5-4, 14-6
INT function 10-1
Internal command, definition D-2
Interpretive BASIC, ref. 1-1
Interrupts. QUIT 6-12
Initializing a matrix 9-8
Intra-record storage E-1, E-2
Inverting matrices 9-11

I
lustification, left 5-10
justification, right 5-10

K
Keys, file protection, definition

D-2
Keys, in MIDAS files 8-24
Keys, protection 2-16
KILL character 2-2
KILL character, changing 3-2

Large items, accommodating E-5
LBPS command (BASIC/VM) 13-3
LDEV, definition D-2
Ldisk, definition D-2
LENGTH command (BASIC/VM)

7-4,13-4
LET statement 5-1,14-6
LIN modifier 5-8
LIN* function 8-13,E-3, E-4
Line length, changing 5-12
Line-numbered files E-3
Lines, deleting 7-1

Lines, extracting 7-1
LISTF command (PRIMOS) 2-10,

12-2
Listing directory contents

(BASIC/VM) 3-3
Listing foreground file

(BASIC/VM) 3-3
Lists, reading 5-2
LIST [NH] command (BASIC/VM)
3-4

LIST [NH] command (BASIC/VM)
13-4

Literals 4-2
LOAD command (BASIC/VM)

3-8,13-4
LOCAL statement 10-15,14-6
Local variables 4-3
LOCAL variables, defining 10-15
Logical disk, definition D-2
Logical operators 4-5
Logical expressions:

evaluating 11-6
operators in 11-6
truth table 11-7

LOGIN command (PRIMOS) 12-2
LOGIN, command (PRIMOS) 2-8
LOGOUT command (PRIMOS)

2-16.12-2
Loops:

conditional 6-11
FOR-UNTIL 6-11
FOR-WHILE 6-11
incrementing 6-3
index 6-3
nesting 6-4,14-4-14-5
STEP (default) 14-4
terminating 6-3
UNTIL 14-4
WHILE 14-3

M
Manual organization 1-2
MARGIN statement 5-12.14-7
Margins, changing 5-12
Masks for CVTSS 10-8
Master file directory 2-4
MAT INPUT statement 14-8
MAT PRINT statement 14-8
MAT READ statement 14-8
MAT READ!*] statement 14-8
MAT statement 9-7
MAT statements (BASIC/VM)

14-7-14-8
MAT WRITE statement 14-8
MAT functions:

*,+,- 14-7
CON 9-8,14-7
IDN 9-8,14-7
1NV 9-11,14-7
list of 9-8
NULL 9-8,14-7
TRN 9-12,14-7
ZER 9-8,14-7

MATINPUT statement 9-6

FDR 3058 X - 4 1 January 1980

INDEX X

r

r

MATINPUT'statement 9-6
MATREAD statement 9-5
MATREAD ['] statemenl 9-14
Matrices:

adding 9-10
assigning element values 9-5
assigning one to another 9-9
automatic dimensioning of 9-6
dimensioning 9-1,9-5
identity matrix 9-8
inverting 9-11
MAT statement 9-7
multiplying 9-10
naming 4-3
nulling elements of 9-8
numeric 4-3
reading data into 9-5,9-6
reading from a file 9-14
redimensioning 9-9
string 4-3
subtracting 9-10
transposing 9-12
vs. arrays 9-1
writing to a file 9-14
zeroing elements 9-8

Matrix operations:
addition 9-10
data file I/O 9-12
initializing 9-8
inversion 9-11
list of 9-7
MAT WRITE 9-14
MATREAD ['] 9-14
multiplication 9-10
redimensioning 9-9
scalar multiplication 9-10
subtraction 9-10
transposition 9-12

MATWRITE statement 9-14
MAX operator 11-2
Measuring performance 7-9
Merging programs 3-8
Messages, run-time error C-l-C-2
MFD 2-4
MFD, definition D-2
MIDAS files:

access statements 8-22
accessing 8-21
adding data to 8-24
closing 8-24
configuration of 8-21
conventions 8-22
deleting 8-25
deleting keys 8-24
description 8-20
KEY option 8-23
opening 8-22
positioning 8-Z3
reading 8-23
reading keys 8-23
rewinding pointer in 8-24
SAMEKEY option 8-23
sample DEMO program 8-25
SEQ option 8-23
statements 8-22

template, creating 8-25
terms 8-22
updating 8-24
writing to 8-24

MIDASDEMO program 8-26-8-31
MIN operator 11-2
Mode, definition D-2
Mode:

"calculator" 3-11
command 3-11
immediate 3-11
program-statement 3-11

Modes of operation 3-10.3-11
Modifiers:

FOR 6-9
IF 6-9
in loops 6-11
multiple 6-10
statements, with 6-9
UNLESS 6-9
UNTIL 6-9
WHILE 6-9

Modifying programs 3-6
Modular programming 10-16
Modulus 11-2
Multiple assignment 5-1
Multiple branching 6-7

N
Naming arrays 4-3
Naming matrices 4-3
Naming variables 4-3
Nesting loops 6-4
Nesting segment directories 8-17
NEW command (BASIC/VM)

13-4
NEW command (BASIC/VM) 3-1
New User's Guide 'To EDITOR And

RUNOFF D-4
NEXT statement 6-3,14-8
Non-foreground file, listing 3-4
Notation, exponential 4-2
Nulling a matrix 9-8
Numbering statements 4-6
Numeric array elements 9-1
Numeric constants 4-2
Numeric fields, formatting
5-8-5-10

Numeric format characters 14-10.
14-11

Numeric functions 4-4
Numeric expressions:

composition ll-i
evaluating 11-2
operators in 11-2

o
Object file, definition D-3
OK prompt 2-3
OLD command (BASIC/VM)

3-1,13-4
Old files, accessing 3-1
ON-END GOTO statement

14-9
ON-END statemenl 8-11
ON-ERROR GOTO statement

14-9
ON-ERROR statement 7-7
ON-GOSUB statement 14-8
ON-GOTO statement 6-7,14-8
ON-QUIT GOTO statement

14-9
Operands, BASIC/VM 4-1
Operations.directory 2-9
Operations, matrix 9-7
Operators:

C) 11-2
(+) 11-2
(/) 11-2
(-) 11-2
(<) 11-3,11-5
(<>.><) n-3.11-5
(=) 11-3,11-5
(>) 11-3.11-5
" or " 11-2
AND 11-5,11-6.11-6
arithmetic 4-4.11-2
Binary 11-2
binary 4-4
logical 4-5,11-6
MAX 11-2
MIN 11-2
MOD 11-2
NOT 11-5,11-6
OR 11-5,11-6
relational 4-4,11-3,11-5
relational, priority of 11-5
string 4-5,11-3
unary 4-4
Unary (+.-) H-2

Options, program (figure) 3-6,3-7
OR operator 11-6
Organization, manual 1-2
Output line length 5-12
Output, data 5-1
Overview of BASIC/VM 1-1.1-4

PASSWD command (PRIMOS)
2-9.12-3

Passwords, directory 2-7
Passwords:

assigning 2-9
non-owner 2-9
on directories 2-9
owner 2-9

Pathname 2-4
Pathname, definition D-3
Pathnames, relative 2-7
Patterns, data storage E-1
PAUSE statement 7-5,14-9
PDEV. definition D-3
Pdisk, definition D-3
PERF command (BASIC/VM)
7-10,13-4

PERF command:
mnemonics 7-11

1 lanuary 1980 X-5
FDR 3058

X INDEX

options 7-10
statistics, using 7-10

Performance measurement 7-9
Phantom user, definition D-3
Physical disk, definition D-3
Pointers. READ 8-7
POSITION statement 8-13,14-9
POSITION options:

KEY 14-9
SAMEKEY 14-9
SEQ 14-9
TO 14-9

Positioning, cursor 10-16
Positioning, in files 8-13
Precedence, relational operators.

of 11-5
PRIMOS condition mechanism

D- l
PRIMOS EDITOR D-4
PRIMOS features D-l-D-4
PRIMOS terms D-l-D-4
PRIMOS commands:

ATTACH 2-9.12-1
AVAIL 12-1
BASICV 3-1,12-1,3-10
CLOSE 12-1
CNAME 2-12,12-1
COMINPUT 6-16,12-1
COMOUTPUT 12-2
CONCA'T 2-15
CREATE 2-10
DELETE 2-10,12-2
LISTF 2-10,12-2
LOGIN 2-8,12-2
LOGOUT 2-16,12-2
PASSWD 2-9,12-3
PROTEC 2-16,12-3
SIZE 2-12,12-3
SLIST 2-13,12-3
SPOOL 2-13,12-3
STATUS 12-3
summary of 12-1-12-4
TERM 2-2,12-4,3-2
USERS 12-4

PRIMOS prompls:
ER! 2-3
OK, 2-3
RDY 2-3

PRIMOS:
command format 2-1
conventions 2-1
file structure 2-4
file system 2-4
file types 2-6

PRINT operations, enhancing
10-16

PRINT statement 5-6.14-10
PRINT USING statemenl 5-8,

14-10
Print zones 5-6
PRINT modifiers:

COL 5-6
colon 5-7
comma 5-6
LIN 5-8

list of 5-6
SPA 5-7
TAB 5-7

PRINT options:
LIN 14-10
SPA 14-10
'TAB 14-10

Printing files 2-13
Printing with special characters

5-8
Printing, default 5-6
Program-file, definition 3-2
Program-statement mode 3-11
Programs:

branching in 6-4
branching out of 6-14
breakpoints in 7-4
chaining to 6-14
combining 3-8
comments in 4-7
compiling 3-5
conditional control in 6-2
control flow in 6-1
creating 3-2
data I/O 5-1
debugging 7-1,7-4
development of 3-7
editing 7-1
errors in 7-1
executing 3-5
external branching in 6-14
functions in 10-13
hailing 7-5
interrupting 6-12
length of 7-4
loops in 6-3
merging 3-8
modifying 3-6
multiple branching in 0-7
options 3-6,3-7
reading data in 5-2
restoring data in 5-3
running 3-5
running from PRIMOS 3-10
sample A-l-A-7
sample (MIDAS) 8-26
statements in 4-6
terminating 6-2
trapping QUITS in 6-12
unconditional control in 6-1
error traps in 7-7

Prompt character, BASIC/VM 3-1
PROTEC command (PRIMOS)

2-16,12-3
Protecting files 2-16
PURGE command (BASIC/VM)

3-9,13-5
Purging files 3-9

Q

QUIT ERROR OFF statement
14-12

QUTT interrupts 6-12

R

Question mark (?) 2-2
Queue, spool 2-13
QUIT command (BASIC/VM) 3-9,

13-5

Random access 8-13
Random number generator 10-3
RANDOMIZE stalement 10-4,

14-12
RDY prompt, PRIMOS 2-3
READ KEY statement 8-23
READ LINE stalement 14-12
READ statemenl 5-2,8-8
READ vs. READLINE 8-9
READ [KEY] statement 14-12
READ* statement 8-8
Reading ASCII files E-8-E-16
READLINE statemenl 8-9
READf] statement 14-12
Record size, default 8-2
Record structure:

ASC files E-1
ASCDA E-3, E-4
ASCLN E-3
ASCSEP E-2
BIN E-4
BINDA E-4

Record-size, default E-5
Records:

enlarging E-5
fixed-length 8-2. E-l-E-5,

E-4. E-5
size, altering E-5-E-8
variable-length 8-2. E-l-E-5

Recursive functions 10-14
Recycling data values 5-3
Redimensioning a matrix 9-9
Relational operators 4-5.11-3.11-5
Relational expressions:

evaluating 11-3
numeric 11-3
using ASCII codes 11-4

Relative pathnames 2-7
REM stalement 14-12
Remote directories, attaching 3-12
Remote file access 3-12
REMOVE statement 8-24,14-12
RENAME command (BASIC/VM)

3-9.13-5
Renaming files 3-9
REPLACE slalement 8-18,14-12
Representations, number D-3
RESEQUENCE command
(BASIC/VM) 13-5

RESTORE statement 5-3,14-13
Restoring data 5-3
RETURN key 2-2
RETURN stalement 14-13
REWINDslatemenl 8-7
REWIND [KEY] statement 14-13
Rewinding file pointer 8-7
RND function 10-3
Routine BASIC/VM operations

3-2

~ >

~

-

FDR 3058 X-6 i January 1980

INDEX X

RUBOUT key 2-2
Run-lime error codes C-l-C-2
Run-time errors 3-5
RUNNfNH] command
(BASIC/VM) 13-5

RUNOFF. PRIMOS D-4
RUNfNH] command (BASIC/VM)
3-5

SAM files:
access statements 8-5
closing 8-12
opening 8-5
reading 8-7. E-8-E-16
reading entire records 8-9
record-size in E-5, E-6
trapping errors in 8-11
writing data to 8-5

Sample session, (immediate mode)
3-11

Sample programs:
graphics A-l-A-3
ma th drill A-3-A-5
MIDAS DEMO 8-25-8-31
text justification A-6. A-7

Saving files 3-4
Scalar multiplication 9-10
SCRATCH files 8-3
Screen-positioning 10-16
SD* unit convention 8-15
SEGDIR 8-15
Segment directories, copying

D-8-D-10
Segment directories, deleting

D-8-D-10
Segment directories:

accessing 8-16
creating 8-15
data files, deleting 8-18
deleting 8-19
naming 8-15
nesting 8-17
positioning 8-16
REPLACE 8-18
SD* unit convention 8-15
writing data to 8-15

Segment directory, definition
D-3

Segment, definition D-3
Segno,definition D-3
Sequential access method 8-4
Sequential files, reading E-8-E-16
Setting breakpoints 7-4
Setting terminal characteristics

D-4
SIZE command (PRIMOS) 2-12

12-3
Size, file 2-12
SLIST command (PRIMOS) 2-13

12-3
Source code, translating 3-5
Source file, definition D-3
SPA modifier 5-7

Special characters, terminal 2-2
Special terminal keys 2-2
SPOOL command (PRIMOS) 2-13
Spool queue, listing 2-13
SPOOL command (PRIMOS) 12-3
SPOOL command:

-AS 2-14
-AT 2-14
-CANCEL 2-14
-DEFER 2-14
-LIST 2-13
-NOHEAD 2-15
options 2-13-2-15

Stalement syntax 4-6
Slalemenls in BASIC/VM 4-6
Slatements. conventions in 14-1
Statements:

input/output 5-1
modifiers 6-9

STATUS command (PRIMOS) 12-3
STEP size, default 14-4
STOP statement 6-2,14-13
Slopping program execulion 6-2
Storage pa Herns, data E-1
Slorage. intra-record E-1, E-2
STR function, using 10-8
Stream, output, definition D-3
String array elements 9-2
String constants 4-2
String fields, formatting 5-10
String format characiers 14-11
String functions 4-4
Siring operators 4-5
Siring expressions:

composition 11-3
evaluating 11-3
evaluation 11-4,11-5
operators in 11-4

Strings:
changing lengths 9-5
converting to arrays 9-4

Structure:
directory 2-4
file 2-4

Sub-UFD. definition D-4
Subdirectory 2-4
Subdirectory, definition D-3
Subroutine, transfer lo 6-1
Subscripts 4-3
Subscripts, calculaling 5-2
Subtraction operator 11-2
Summary of commands 4-6
Summary of statements 4-8
Summary. PRIMOS EDITOR

commands D-5
Synlax errors 3-5
System access 2-8
System information 2-ll
System prompts 2-3
System functions:

ABS 10-2
ACS 10-2
ASN 10-2
ATN 10-2
CHAR 10-7

CODE 10-7
COS 10-2
COSH 10-2
CVTSS 10-7
DATES 10-7
DEG 10-2
DET 10-2
ENT 10-2
ERL 10-2
ERR 10-2
EXP 10-2
INDEX 10-7
INT 10-1,10-2
LEFT 10-7
LEN 10-7
LIN* 10-2
list of 10-2
loc; 10-2
MID 10-7
NUM 10-2
numeric 10-1
PI 10-2
RAD 10-2
RIGHT 10-7
RND 10-2,10-3
SGN 10-3
SIN 10-3
SINH 10-3
SQR 10-3
S'TRS 10-7
siring 10-6
SUB 10-7
'TAN 10-3
TANH 10-3
'TIMES 10-7
VAL 10-7

System, leaving the 2-16

'TAB modifier 5-7
TABLE option. PERF 7-10
TERM command 2-2
'TERM command (PRIMOS) 3-2.

12-4
'TERM command options D-4
'Terminal characteristics, changing

D-4
'Terminal keys 2-2
'Terminal output, controlling 10-16
Terminating execution 6-2
Terms. PRIMOS D-l-D-4
Text justification program

A-6-A-7
'Timing data input 5-4.5-5
TRACE command (BASIC/VM)

7-6.13-5
Tracing statement execution 7-6
'Translating source code 3-5
'Transposing matrices 9-012
'Trapping errors 7-7
'Trapping QUTTs 6-12
TRECPY D-9
TREDEL D-9
Tree structure 2-4

1 January 1980
X - 7

FDR 3058

X INDEX

Treename 2-4
Treename, definition D-4
'Truncating files E-8
Truth table 11-7
'Tutorial reference, BASIC 1-1
'TYPEcommand (BASIC/VM) 3-4,

13—5
Type-ahead. PRIMOS 2-3
'Type-codes, file 14-4
'Type-codes, files 8-2
'Types, file (PRIMOS) 2-6

u
UFD 2-4
UFD, definition D-4
UFDCPY D-9
UFDDEL D-9
Unary operators 4-4
Unconditional program control

6-1
Underscore (_) 2-2
Unit, definition D-4
UNLESS modifier 14-5
UNTIL modifier 14-3

UPDATE statement 8-24,14-13
User file directory 2-4
User file directory, definition D-4
User, phantom, definition D-3
User-defined functions:

DEF 10-9
defining 10-9
FN-FN END 10-9
naming 10-9
numeric 10-9
string 10-10
using 10-13

USERS command (PRIMOS) 12-4
Using EDITOR for BASIC/VM

programs D-6

V
VAL funclion, using 10-7
Values, subscripts, of 5-2
Variables:

local 4-3,10-15
naming 4-3
numeric scalar 4-2
numeric subscripted 4-3

numeric. READing with E-9
scalar 4-2
simple 4-3
string scalar 4-2
string subscripted 4-3
string, READing with

E-9-E-10
subscripted 4-3

Volume 2-9
Volume, definition D-4

w
WHILE modifier 14-4
Word, definition D-4
Work session, completing 2-16
Working directory 2-7
WRITE statemenl 14-13
WRITE USING statement 8-6,14-13
Writing data to files 8-6

X,Y,Z
Zones, printing 5-6

FDR 3058
X - B iJanuary 1980

	Front Cover
	Title Page
	Copyright
	i-5
	i-6
	i-7
	Section I
	Overview
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	Chapter 2
	Overview of PRIMOS
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Section II
	Basic Features
	Chapter 3
	Using BASIC/VM
	3-1
	3-1A
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	Chapter 4
	Language elements
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	Section III
	Programming In BASIC/VM
	Chapter 5
	Data I/O
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	Chapter 6
	Program control statements
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-17A
	6-17B
	6-17C
	6-17D
	Chapter 7
	Editing and debugging
	7-1
	7-2
	7-2A
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	Section IV
	Advanced Features
	Chapter 8
	File handling
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-15A
	8-16
	8-17
	8-18
	8-19
	8-20
	8-20A
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	Chapter 9
	Arrays and matrices
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-6A
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-12A
	9-13
	9-14
	9-15
	Chapter 10
	Functions
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17 (1981)
	Chapter 11
	Expressions
	10-17 (1980)
	Chapter 11
	Expressions
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	Section V
	Reference
	Chapter 12
	PRIMOS commands
	12-1
	12-2
	12-3
	12-4
	Chapter 13
	BASIC/VM commands
	13-1
	13-2
	13-3
	13-4
	13-5
	Chapter 14
	BASIC/VM statements
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-10A
	14-11
	14-12
	14-13
	Appendix A
	Sample programs
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	Appendix B
	ASCII character set
	B-1
	B-2
	B-3
	Appendix C
	Run-time error codes
	C-1
	C-2
	Appendix D
	Additional PRIMOS features
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	Appendix E
	Advanced file handling
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	Appendix F
	Loading non-system library routines
	F-1
	F-2
	F-3
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8

